Change search
ReferencesLink to record
Permanent link

Direct link
Gene-environment interactions: Neurodegeneration in non-mammals and mammals
Show others and affiliations
2010 (English)In: Neurotoxicology, ISSN 0161-813X, E-ISSN 1872-9711, Vol. 31, no 5, 582-8 p.Article in journal (Refereed) Published
Abstract [en]

The understanding of how environmental exposures interact with genetics in central nervous system dysfunction has gained great momentum in the last decade. Seminal findings have been uncovered in both mammalian and non-mammalian model in large result of the extraordinary conservation of both genetic elements and differentiation processes between mammals and non-mammalians. Emerging model organisms, such as the nematode and zebrafish have made it possible to assess the effects of small molecules rapidly, inexpensively, and on a miniaturized scale. By combining the scale and throughput of in vitro screens with the physiological complexity and traditional animal studies, these models are providing relevant information on molecular events in the etiology of neurodegenerative disorders. The utility of these models is largely driven by the functional conservation seen between them and higher organisms, including humans so that knowledge obtained using non-mammalian model systems can often provide a better understanding of equivalent processes, pathways, and mechanisms in man. Understanding the molecular events that trigger neurodegeneration has also greatly relied upon the use of tissue culture models. The purpose of this summary is to provide-state-of-the-art review of recent developments of non-mammalian experimental models and their utility in addressing issues pertinent to neurotoxicity (Caenorhabditis elegans and Danio rerio). The synopses by Aschner and Levin summarize how genetic mutants of these species can be used to complement the understanding of molecular and cellular mechanisms associated with neurobehavioral toxicity and neurodegeneration. Next, studies by Suñol and Olopade detail the predictive value of cultures in assessing neurotoxicity. Suñol and colleagues summarize present novel information strategies based on in vitro toxicity assays that are predictive of cellular effects that can be extrapolated to effects on individuals. Olopade and colleagues describe cellular changes caused by sodium metavanadate (SMV) and demonstrate how rat primary astrocyte cultures can be used as predicitive tools to assess the neuroprotective effects of antidotes on vanadium-induced astrogliosis and demyelination.

Place, publisher, year, edition, pages
2010. Vol. 31, no 5, 582-8 p.
Keyword [en]
Caenorhabditis elegans, Zebrafish, Tissue culture, Neurotoxicity, Astrocyte, Vanadium, In vitro
National Category
Natural Sciences Chemical Sciences
Research subject
Neurochemistry and Molecular Neurobiology; Neurochemistry and Neurotoxicology
URN: urn:nbn:se:su:diva-50345DOI: 10.1016/j.neuro.2010.03.008ISI: 000281939200023PubMedID: 20359493OAI: diva2:380859
Available from: 2010-12-22 Created: 2010-12-22 Last updated: 2015-03-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Forsby, Anna
By organisation
Department of Neurochemistry
In the same journal
Natural SciencesChemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 60 hits
ReferencesLink to record
Permanent link

Direct link