Change search
ReferencesLink to record
Permanent link

Direct link
On Mutually Unbiased Bases
Stockholm University, Faculty of Science, Department of Physics.
2010 (English)In: International journal of quantum information, ISSN 0219-7499, Vol. 8, no 4, 535-640 p.Article, review/survey (Refereed) Published
Abstract [en]

Mutually unbiased bases for quantum degrees of freedom are central to all theoretical investigations and practical exploitations of complementary properties. Much is known about mutually unbiased bases, but there are also a fair number of important questions that have not been answered in full as yet. In particular, one can find maximal sets of N + 1 mutually unbiased bases in Hilbert spaces of prime-power dimension N = p(M), with p prime and m a positive integer, and there is a continuum of mutually unbiased bases for a continuous degree of freedom, such as motion along a line. But not a single example of a maximal set is known if the dimension is another composite number (N = 6; 10; 12,...). In this review, we present a unified approach in which the basis states are labeled by numbers 0, 1, 2,..., N - 1 that are both elements of a Galois field and ordinary integers. This dual nature permits a compact systematic construction of maximal sets of mutually unbiased bases when they are known to exist but throws no light on the open existence problem in other cases. We show how to use the thus constructed mutually unbiased bases in quantum-informatics applications, including dense coding, teleportation, entanglement swapping, covariant cloning, and state tomography, all of which rely on an explicit set of maximally entangled states (generalizations of the familiar two-q-bit Bell states) that are related to the mutually unbiased bases. There is a link to the mathematics of finite affine planes. We also exploit the one-to-one correspondence between unbiased bases and the complex Hadamard matrices that turn the bases into each other. The ultimate hope, not yet fulfilled, is that open questions about mutually unbiased bases can be related to open questions about Hadamard matrices or affine planes, in particular the notorious existence problem for dimensions that are not a power of a prime. The Hadamard-matrix approach is instrumental in the very recent advance, surveyed here, of our understanding of the N-6 situation. All evidence indicates that a maximal set of seven mutually unbiased bases does not exist - one can find no more than three pairwise unbiased bases - although there is currently no clear-cut demonstration of the case.

Place, publisher, year, edition, pages
2010. Vol. 8, no 4, 535-640 p.
Keyword [en]
Mutually unbiased bases, complex Hadamard matrices, generalized Bell states
National Category
Physical Sciences
URN: urn:nbn:se:su:diva-50178DOI: 10.1142/S0219749910006502ISI: 000281889900001OAI: diva2:381917
authorCount :4Available from: 2010-12-29 Created: 2010-12-21 Last updated: 2010-12-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Bengtsson, Ingemar
By organisation
Department of Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 26 hits
ReferencesLink to record
Permanent link

Direct link