Change search
ReferencesLink to record
Permanent link

Direct link
Impregnation of zeolite membranes for enhanced selectivity
Show others and affiliations
2010 (English)In: Journal of Membrane Science, ISSN 0376-7388, Vol. 365, no 1-2, 188-197 p.Article in journal (Refereed) Published
Abstract [en]

A new method to enhance the selectivity of zeolite membranes for alternative separation tasks has been developed. Calcined MFI membranes were impregnated with a solution of Ca(NO3)2 in methanol and calcined at 600 °C to thermally decompose the nitrate. SEM and EDS data indicated that calcium compounds were evenly distributed in the entire MFI film and in addition, a few crystals of a calcium compound were observed on top of the film in some locations. A HR-TEM investigation showed that calcium compounds were present in low concentration in the sample and that the interiors of the MFI crystals remained fully crystalline after impregnation and calcination. However, the HR-TEM investigation could neither confirm nor rule out the occurrence of calcium compounds in the pores in the interiors of the crystals. In accordance with the SEM and TEM observations, XRD data showed that calcium compounds on top of the film were relatively large CaCO3 crystals and that the zeolite film remained crystalline after impregnation. However, eventual calcium compounds in the pores of the zeolite could not be studied by XRD since these would probably generate a very weak signal of amorphous material. FTIR data indicated that impregnation increased the amount of both physisorbed and chemisorbed CO2, the latter resulting in carbonate species in the film. n-Hexane/helium adsorption branch permporometry showed that the high quality of the membranes remained after modification. The single component permeance ratio CO2/H2 increased from 0.6 to 1.5 after impregnation. Calculations indicated that the increased CO2/H2 single component permeance ratios were both an effect of increased adsorption of CO2 in the film and reduced pressure drop in the support. The dual component separation factor α CO2/H2 at room temperature increased drastically from 0.7 (H2 selective) to 3.4 (CO2 selective) after impregnation. This work shows for the first time that impregnation procedures can be used to tailor the diffusion properties of zeolite membranes in a similar way as impregnation procedures are used to tailor the catalytic performance of catalysts.

Place, publisher, year, edition, pages
2010. Vol. 365, no 1-2, 188-197 p.
Keyword [en]
Zeolite membrane, Impregnation, Carbon dioxide, Separation, Selectivity
National Category
Inorganic Chemistry
URN: urn:nbn:se:su:diva-50702DOI: 10.1016/j.memsci.2010.09.006ISI: 000284750300022OAI: diva2:382249
Available from: 2010-12-30 Created: 2010-12-30 Last updated: 2011-11-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Zhang, DaliangZou, Xiaodong
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Membrane Science
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 47 hits
ReferencesLink to record
Permanent link

Direct link