Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The 3-D structure of SN 1987A's inner ejecta
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Show others and affiliations
2010 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 517, A51- p.Article in journal (Refereed) Published
Abstract [en]

Context. Observing the inner ejecta of a supernova is possible only in a handful of nearby supernova remnants. The core-collapse explosion mechanism has been extensively explored in recent models and predict large asymmetries. SN 1987A is the first modern stellar explosion that has been continuously observed from its beginning to the supernova remnant phase. Twenty years after the explosion, we are now able to observe the three-dimensional spatially resolved inner ejecta of this supernova. Aims. Detailed mapping of newly synthesised material and its radioactive decay daughter products sheds light on the explosion mechanism. This may reveal the geometry of the explosion and its connection to the equatorial ring and the outer rings around SN 1987A. Methods. We have used integral field spectroscopy to image the supernova ejecta and the equatorial ring in the emission lines of [Si I] + [Fe II] (lambda 1.64 mu m) and He I (lambda 2.058 mu m). The spectral information can be mapped into a radial velocity image revealing the expansion of the ejecta both as projected onto the sky and perpendicular to the sky plane. Results. The inner ejecta are spatially resolved in a North-South direction and are clearly asymmetric. Like the ring emission, the northern parts of the ejecta are blueshifted, while the material projected to the South of the supernova centre is moving away from us. We argue that the bulk of the ejecta is situated in the same plane as defined by the equatorial ring and does not form a bipolar structure as has been suggested. The exact shape of the ejecta is modelled and we find that an elongated triaxial ellipsoid fits the observations best. The velocity measured in the [Si I] + [Fe II] line corresponds to similar to 3000 km s(-1) and is the same as the width of the IR [Fe II] line profiles during the first years. From our spectral analyses of the ejecta spectrum we find that most of the He I, [Si I] and [Fe I-II] emission originates in the core material which has undergone explosive nucleosynthesis. The He I emission may be the result of alpha-rich freeze-out if the positron energy is deposited locally. Conclusions. Our observations clearly indicate a non-symmetric explosion mechanism for SN 1987A. The elongation and velocity asymmetries point towards a large-scale spatial non-spherical distribution as predicted in recent explosion models. The orientation of the ejecta in the plane of the equatorial ring argues against a jet-induced explosion through the poles due to stellar rotation.

Place, publisher, year, edition, pages
2010. Vol. 517, A51- p.
Keyword [en]
supernovae: individual: SN 1987A
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Astronomy
Identifiers
URN: urn:nbn:se:su:diva-50091DOI: 10.1051/0004-6361/201014538ISI: 000280929400061OAI: oai:DiVA.org:su-50091DiVA: diva2:382292
Note
authorCount :5Available from: 2010-12-30 Created: 2010-12-21 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Spectral modeling of nebular-phase supernovae
Open this publication in new window or tab >>Spectral modeling of nebular-phase supernovae
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Massive stars live fast and die young. They shine furiously for a few million years, during which time they synthesize most of the heavy elements in the universe in their cores. They end by blowing themselves up in a powerful explosion known as a supernova (SN). During this process, the core collapses to a neutron star or a black hole, while the outer layers are expelled with velocities of thousands of kilometers per second. The resulting fireworks often outshine the entire host galaxy for many weeks. The explosion energy is eventually radiated away, but powering of the newborn nebula continues by radioactive isotopes synthesized in the explosion. The ejecta are now quite transparent, and we can see the material produced in the deep interiors of the star. To interpret the observations, detailed spectral modeling is needed. This thesis aims to develop and apply state-of-the-art computational tools for interpreting and modeling SN observations in the nebular phase. This requires calculation of the physical conditions throughout the nebula, including non-thermal processes from the radioactivity, thermal and statistical equilibrium, as well as radiative transport. The inclusion of multiline radiative transfer, which we compute with a Monte Carlo technique, represents one of the major advancements presented in this thesis. On February 23 1987, the first SN observable by the naked eye since 1604 exploded, SN 1987A. Its proximity has allowed unprecedented observations, which in turn have lead to significant advancements in our understanding of SN explosions. As a first application of our model, we analyze the 44Tipowered phase (t & 5 years) of SN 1987A. We find that a magnetic field is present in the nebula, trapping the positrons that provide the energy input, and resulting in strong iron lines in the spectrum. We determine the 44Ti mass to 1.5(+0.5−0.5)*10−4 M⊙. From the near-infrared spectrum at an age of 19 years, we identify strong emission lines from explosively synthesized metals such as silicon, calcium, and iron. We use integral-field spectroscopy to construct three-dimensional maps of the ejecta, showing a morphology suggesting an asymmetric explosion. The model is then applied to the close-by and well-observed Type IIP SN 2004et, analyzing its ultraviolet to mid-infrared evolution. Based on its Mg I] 4571 Å, Na I 5890, 5896 Å, [O I] 6300, 6364 Å, and [Ne II] 12.81 mm nebular emission lines, we determine its progenitor mass to be around 15 M⊙. We confirm that silicate dust, SiO, and CO have formed in the ejecta. Finally, the major optical emission lines in a sample of Type IIP SNe areanalyzed.We find that most spectral regions in Type IIP SNe are dominated by emission from the massive hydrogen envelope, which explains the relatively small variation seen in the sample. We also show that the similar line profiles seen from all elements suggest extensive mixing occurring in most hydrogenrich SNe.

Place, publisher, year, edition, pages
Stockholm: Department of Astronomy, Stockholm University, 2011. 86 p.
Keyword
supernovae, nucleosynthesis, radiative transfer, massive stars, 1987A, IIP, supernovor, nukleosyntes, spektralmodellering, strålningstransport, massiva stjärnor, 1987A, IIP
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Astronomy
Identifiers
urn:nbn:se:su:diva-64130 (URN)978-91-7447-407-7 (ISBN)
Public defence
2011-12-16, sal FB52, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Accepted. Available from: 2011-11-24 Created: 2011-11-09 Last updated: 2011-11-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Fransson, ClaesJerkstrand, Anders
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf