Change search
ReferencesLink to record
Permanent link

Direct link
Calcium-Related Processes Involved in the Inhibition of Depolarization-Evoked Calcium Increase by Hydroxylated PBDEs in PC12 Cells
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
2010 (English)In: Toxicological Sciences, ISSN 1096-6080, E-ISSN 1096-0929, Vol. 114, no 2, 302-309 p.Article in journal (Refereed) Published
Abstract [en]

In vitro studies indicated that hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have an increased toxic potential compared to their parent congeners. An example is the OH-PBDE–induced increase of basal intracellular Ca2+ concentration ([Ca2+]i) by release of Ca2+ from endoplasmic reticulum (ER) and mitochondria and/or influx of extracellular Ca2+. ER and mitochondria regulate Ca2+ homeostasis in close association with voltage-gated Ca2+ channels (VGCCs). Therefore, effects of (OH-)PBDEs on the depolarization-evoked (100mM K+) net increase in [Ca2+]i (depolarization-evoked [Ca2+]i) were measured in neuroendocrine pheochromocytoma cells using the Ca2+-responsive dye Fura-2. OH-PBDEs dose dependently inhibited depolarization-evoked [Ca2+]i. This inhibition was potentiated by a preceding increase in basal [Ca2+]i. Especially at higher concentrations of OH-PBDEs (5–20μM), large increases in basal [Ca2+]i strongly inhibited depolarization-evoked [Ca2+]i. The inhibition appeared more sensitive to increases in basal [Ca2+]i by Ca2+ release from intracellular stores (by 3-OH-BDE-47 or 6′-OH-BDE-49) compared to those by influx of extracellular Ca2+ (by 6-OH-BDE-47 or 5-OH-BDE-47). The expected [Ca2+]i difference close to the membrane suggests involvement of Ca2+-dependent regulatory processes close to VGCCs. When coapplied with depolarization, some OH-PBDEs induced also moderate direct inhibition of depolarization-evoked [Ca2+]i. Polybrominated diphenyl ethers and methoxylated BDE-47 affected neither basal nor depolarization-evoked [Ca2+]i, except for BDE-47, which moderately increased fluctuations in basal [Ca2+]i and depolarization-evoked [Ca2+]i. These findings demonstrate that OH-PBDEs inhibit depolarization-evoked [Ca2+]i depending on preceding basal [Ca2+]i. Related environmental pollutants that affect Ca2+ homeostasis (e.g., polychlorinated biphenyls) may thus also inhibit depolarization-evoked [Ca2+]i, justifying further investigation of possible mixture effects of environmental pollutants on Ca2+ homeostasis.

Place, publisher, year, edition, pages
2010. Vol. 114, no 2, 302-309 p.
Keyword [en]
brominated flame retardant, calcium homeostasis, calcium signaling, calcium-induced VGCC inhibition, depolarization-evoked calcium influx, in vitro neurotoxicity
National Category
Environmental Sciences
URN: urn:nbn:se:su:diva-50684DOI: 10.1093/toxsci/kfp310ISI: 000276350200014OAI: diva2:382295
authorCount :4Available from: 2010-12-30 Created: 2010-12-30 Last updated: 2010-12-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Bergman, Åke
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Toxicological Sciences
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 29 hits
ReferencesLink to record
Permanent link

Direct link