Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Water abundance variations around high-mass protostars: HIFI observations of the DR21 region
Show others and affiliations
2010 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 518, L107- p.Article in journal (Refereed) Published
Abstract [en]

Context. Water is a key molecule in the star formation process, but its spatial distribution in star-forming regions is not well known. Aims: We study the distribution of dust continuum and H2O and 13CO line emission in DR21, a luminous star-forming region with a powerful outflow and a compact H ii region. Methods: Herschel-HIFI spectra near 1100 GHz show narrow 13CO 10-9 emission and H2O 111-000 absorption from the dense core and broad emission from the outflow in both lines. The H2O line also shows absorption by a foreground cloud known from ground-based observations of low-J CO lines. Results: The dust continuum emission is extended over 36” FWHM, while the 13CO and H2O lines are confined to ≈24” or less. The foreground absorption appears to peak further North than the other components. Radiative transfer models indicate very low abundances of ~2×10-10 for H2O and ~8×10-7 for 13CO in the dense core, and higher H2O abundances of ~4×10-9 in the foreground cloud and ~7×10-7 in the outflow. Conclusions: The high H2O abundance in the warm outflow is probably due to the evaporation of water-rich icy grain mantles, while the H2O abundance is kept down by freeze-out in the dense core and by photodissociation in the foreground cloud. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

Place, publisher, year, edition, pages
2010. Vol. 518, L107- p.
Keyword [en]
ISM: molecules, stars: formation, astrochemistry, ISM: individual objects: DR21
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Astronomy
Identifiers
URN: urn:nbn:se:su:diva-51507DOI: 10.1051/0004-6361/201014515ISI: 000281527200108OAI: oai:DiVA.org:su-51507DiVA: diva2:384621
Note
authorCount :59Available from: 2011-01-10 Created: 2011-01-10 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Larsson, Bengt
By organisation
Department of Astronomy
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf