References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Nonholonomic Riemann and Weyl tensors for flag manifoldsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)In: Theoretical and mathematical physics, ISSN 0040-5779, E-ISSN 1573-9333, Vol. 153, no 2, 1511-1538 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 153, no 2, 1511-1538 p.
##### Keyword [en]

lie algebra cohomology, cartan prolongation, riemann tensor, nonholonomic manifold, flag manifold, G(2)-structure
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-55240DOI: 10.1007/s11232-007-0131-zISI: 000251154200003OAI: oai:DiVA.org:su-55240DiVA: diva2:402351
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

authorCount :2Available from: 2011-03-08 Created: 2011-03-07 Last updated: 2011-03-08Bibliographically approved

On any manifold, any nondegenerate symmetric 2-form (metric) and any nondegenerate skew-symmetric differential form omega can be reduced to a canonical form at any point but not in any neighborhood: the corresponding obstructions are the Riemannian tensor and d omega. The obstructions to flatness (to reducibility to a canonical form) are well known for any G-structure, not only for Riemannian or almost symplectic structures. For a manifold with a nonholonomic structure (nonintegrable distribution), the general notions of flatness and obstructions to it, although of huge interest (e.g., in supergravity) were not known until recently, although particular cases have been known for more than a century (e.g., any contact structure is nonholonomically ""flat"": it can always be reduced locally to a canonical form). We give a general definition of the nonholonomic analogues of the Riemann tensor and its conformally invariant analogue, the Weyl tensor, in terms of Lie algebra cohomology and quote Premet's theorems describing these cohomologies. Using Premet's theorems and the SuperLie package, we calculate the tensors for flag manifolds associated with each maximal parabolic subalgebra of each simple Lie algebra (and in several more cases) and also compute the obstructions to flatness of the G(2)-structure and its nonholonomic superanalogue.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});