References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt147",{id:"formSmash:upper:j_idt147",widgetVar:"widget_formSmash_upper_j_idt147",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt148_j_idt150",{id:"formSmash:upper:j_idt148:j_idt150",widgetVar:"widget_formSmash_upper_j_idt148_j_idt150",target:"formSmash:upper:j_idt148:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Composite-fermion wave functions as correlators in conformal field theoryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 76, no 7, 75347- p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2007. Vol. 76, no 7, 75347- p.
##### Keyword [en]

quantum hall states, quasi-particles, statistics, charge, construction, excitations, solitons, systems, order, edge
##### National Category

Physical Sciences
##### Identifiers

URN: urn:nbn:se:su:diva-55886DOI: 10.1103/PhysRevB.76.075347ISI: 000249155300127OAI: oai:DiVA.org:su-55886DiVA: diva2:407602
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt388",{id:"formSmash:j_idt388",widgetVar:"widget_formSmash_j_idt388",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt394",{id:"formSmash:j_idt394",widgetVar:"widget_formSmash_j_idt394",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt400",{id:"formSmash:j_idt400",widgetVar:"widget_formSmash_j_idt400",multiple:true});
##### Note

authorCount :4Available from: 2011-03-31 Created: 2011-03-30 Last updated: 2011-03-31Bibliographically approved

It is known that a subset of fractional quantum Hall wave functions has been expressed as conformal field theory (CFT) correlators, notably the Laughlin wave function [Phys. Rev. Lett. 50, 1395 (1983)] at filling factor nu=1/m (m odd) and its quasiholes, and the Pfaffian wave function at nu=1/2 and its quasiholes. We develop a general scheme for constructing composite-fermion (CF) wave functions from conformal field theory. Quasiparticles at nu=1/m are created by inserting anyonic vertex operators, P-1/m(z), that replace a subset of the electron operators in the correlator. The one-quasiparticle wave function is identical to the corresponding CF wave function, and the two-quasiparticle wave function has correct fractional charge and statistics and is numerically almost identical to the corresponding CF wave function. We further show how to exactly represent the CF wave functions in the Jain series nu=s/(2sp+1) [Phys. Rev. Lett. 63, 199 (1989); Composite Fermions (Cambridge University Press, Cambridge, 2007)] as the CFT correlators of a new type of fermionic vertex operators, V-p,V-n(z), constructed from n free compactified bosons; these operators provide the CFT representation of composite fermions carrying 2p flux quanta in the nth CF Landau level. We also construct the corresponding quasiparticle and quasihole operators and argue that they have the expected fractional charge and statistics. For filling fractions 2/5 and 3/7, we show that the chiral CFTs that describe the bulk wave functions are identical to those given by Wen's general classification [Int. J. Mod. Phys. B 6, 1711 (1992); Adv. Phys. 44, 405 (1995)] of quantum Hall states in terms of K matrices and l and t vectors, and we propose that to be generally true. Our results suggest a general procedure for constructing quasiparticle wave functions for other fractional Hall states, as well as for constructing ground states at filling fractions not contained in the principal Jain series.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1106",{id:"formSmash:lower:j_idt1106",widgetVar:"widget_formSmash_lower_j_idt1106",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1107_j_idt1109",{id:"formSmash:lower:j_idt1107:j_idt1109",widgetVar:"widget_formSmash_lower_j_idt1107_j_idt1109",target:"formSmash:lower:j_idt1107:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});