Change search
ReferencesLink to record
Permanent link

Direct link
Composite-fermion wave functions as correlators in conformal field theory
Stockholm University, Faculty of Science, Department of Physics.
2007 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 76, no 7, 75347- p.Article in journal (Refereed) Published
Abstract [en]

It is known that a subset of fractional quantum Hall wave functions has been expressed as conformal field theory (CFT) correlators, notably the Laughlin wave function [Phys. Rev. Lett. 50, 1395 (1983)] at filling factor nu=1/m (m odd) and its quasiholes, and the Pfaffian wave function at nu=1/2 and its quasiholes. We develop a general scheme for constructing composite-fermion (CF) wave functions from conformal field theory. Quasiparticles at nu=1/m are created by inserting anyonic vertex operators, P-1/m(z), that replace a subset of the electron operators in the correlator. The one-quasiparticle wave function is identical to the corresponding CF wave function, and the two-quasiparticle wave function has correct fractional charge and statistics and is numerically almost identical to the corresponding CF wave function. We further show how to exactly represent the CF wave functions in the Jain series nu=s/(2sp+1) [Phys. Rev. Lett. 63, 199 (1989); Composite Fermions (Cambridge University Press, Cambridge, 2007)] as the CFT correlators of a new type of fermionic vertex operators, V-p,V-n(z), constructed from n free compactified bosons; these operators provide the CFT representation of composite fermions carrying 2p flux quanta in the nth CF Landau level. We also construct the corresponding quasiparticle and quasihole operators and argue that they have the expected fractional charge and statistics. For filling fractions 2/5 and 3/7, we show that the chiral CFTs that describe the bulk wave functions are identical to those given by Wen's general classification [Int. J. Mod. Phys. B 6, 1711 (1992); Adv. Phys. 44, 405 (1995)] of quantum Hall states in terms of K matrices and l and t vectors, and we propose that to be generally true. Our results suggest a general procedure for constructing quasiparticle wave functions for other fractional Hall states, as well as for constructing ground states at filling fractions not contained in the principal Jain series.

Place, publisher, year, edition, pages
2007. Vol. 76, no 7, 75347- p.
Keyword [en]
quantum hall states, quasi-particles, statistics, charge, construction, excitations, solitons, systems, order, edge
National Category
Physical Sciences
URN: urn:nbn:se:su:diva-55886DOI: 10.1103/PhysRevB.76.075347ISI: 000249155300127OAI: diva2:407602
authorCount :4Available from: 2011-03-31 Created: 2011-03-30 Last updated: 2011-03-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 16 hits
ReferencesLink to record
Permanent link

Direct link