CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt156",{id:"formSmash:upper:j_idt156",widgetVar:"widget_formSmash_upper_j_idt156",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt157_j_idt159",{id:"formSmash:upper:j_idt157:j_idt159",widgetVar:"widget_formSmash_upper_j_idt157_j_idt159",target:"formSmash:upper:j_idt157:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Higher order singular problems of Caffarelli-Kohn-Nirenberg-Lin typePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2011 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 385, no 2, 721-736 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2011. Vol. 385, no 2, 721-736 p.
##### Keyword [en]

Nehari manifold, Caffarelli-Kohn-Nirenberg inequality, Sign-changing weight function, Infinitely many solutions
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-56040DOI: 10.1016/j.jmaa.2011.07.005ISI: 000295062600012OAI: oai:DiVA.org:su-56040DiVA: diva2:408691
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt449",{id:"formSmash:j_idt449",widgetVar:"widget_formSmash_j_idt449",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt456",{id:"formSmash:j_idt456",widgetVar:"widget_formSmash_j_idt456",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt462",{id:"formSmash:j_idt462",widgetVar:"widget_formSmash_j_idt462",multiple:true});
##### Note

1Available from: 2011-04-16 Created: 2011-04-05 Last updated: 2017-12-11Bibliographically approved
##### In thesis

We prove the existence of nontrivial critical points of the functional J(lambda)(u) = integral(RN)1/p(vertical bar vertical bar x vertical bar(-a del k)u vertical bar(p) - lambda h(x)vertical bar vertical bar x vertical bar(-(a+k))u vertical bar(p)) - 1/qQ(x)vertical bar vertical bar x vertical bar(-b)u vertical bar(q)dx, related to the Caffarelli-Kohn-Nirenberg inequality and its higher order variant by Lin. As a consequence we obtain nontrivial solutions of the degenerate elliptic equation Delta(vertical bar x vertical bar(-ap)vertical bar Delta u vertical bar(p-2)Delta u) - lambda h(x)vertical bar x vertical bar(-(a+k)p)vertical bar u vertical bar(p-2)u = Q(x)vertical bar x vertical bar(-bq)vertical bar u vertical bar(q-2)u. We also show that when p = 2. J(lambda) has infinitely many critical points.

1. Topics in Nonlinear Elliptic Differential Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay412818",{id:"formSmash:j_idt729:0:j_idt733",widgetVar:"overlay412818",target:"formSmash:j_idt729:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1166",{id:"formSmash:j_idt1166",widgetVar:"widget_formSmash_j_idt1166",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1219",{id:"formSmash:lower:j_idt1219",widgetVar:"widget_formSmash_lower_j_idt1219",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1220_j_idt1222",{id:"formSmash:lower:j_idt1220:j_idt1222",widgetVar:"widget_formSmash_lower_j_idt1220_j_idt1222",target:"formSmash:lower:j_idt1220:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});