Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanoparticles technology: Amplifying the effective sensitivity of biomarker detection to create a urine test for hGH
Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy.
Show others and affiliations
2009 (English)In: Drug Test Analysis, ISSN 1942-7611, Vol. 1, no 9-10, 447-454 p.Article in journal (Refereed) Published
Abstract [en]

Several clinical-grade immunoassays exist for the specific measurement of hGH or its isoforms in blood but there is an urgent need to apply these same reliable assays to the measurement of hGH in urine as a preferred 'non-invasive' biofluid. Unfortunately, conventional hGH immunoassays cannot attain the sensitivity required to detect the low concentrations of hGH in urine. The lowest limit of sensitivity for existing hGH immunoassays is >50 pg/mL, while the estimated concentration of urinary hGH is about 1 pg/m-50 times lower than the sensitivity threshold. We have created novel N-isopropylacrylamide (NIPAm)-based hydrogel nanoparticles functionalized with an affinity bait. When introduced into an analyte-containing solution, the nanoparticles can perform, in one step, (1) complete harvesting of all solution phase target analytes, (2) full protection of the captured analyte from degradation and (3) sequestration of the analyte, effectively increasing the analyte concentration up to a hundredfold. N-isopropylacrylamide nanoparticles functionalized with Cibacron Blue F3GA bait have been applied to raise the concentration of urinary hGH into the linear range of clinical grade immunoassays. This technology now provides an opportunity to evaluate the concentration of hGH in urine with high precision and accuracy

Place, publisher, year, edition, pages
2009. Vol. 1, no 9-10, 447-454 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:su:diva-56868PubMedID: 20355230OAI: oai:DiVA.org:su-56868DiVA: diva2:413514
Available from: 2011-04-28 Created: 2011-04-28 Last updated: 2011-05-02Bibliographically approved
In thesis
1. Colloidal/Solid Phase Extraction (C/S PE) Methods Based on Hydrogel Nanoparticles, Titanium dioxide microparticles and Empore Membranes Applied to Biological and Environmental Matrices
Open this publication in new window or tab >>Colloidal/Solid Phase Extraction (C/S PE) Methods Based on Hydrogel Nanoparticles, Titanium dioxide microparticles and Empore Membranes Applied to Biological and Environmental Matrices
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aim of the work described in this thesis was to create and develop novel technologies in order to overcome barriers and hurdles that analytical chemistry faces focusing on sample extraction. In paper I dye containing amine groups (e.g. Acid Black 48, Remazol Brilliant Blue R) were coupled to NIPA/Acrylic acid (AAc) particles by condensation of the amine group and the carboxylic group. The high affinity between dyes and proteins allow for fast kinetics and complete depletion of the supernatant and protection of the captured analyte from enzymatic degradation. The ability of particles to capture and concentrate analytes was tested against a panel of low abundance, labile tumor relevant biomarkers and in serum. Results indicate that the nanoparticles increased the sensitivity limit of mass spectrometry analysis and that the dye based baits have extremely high affinity for the target analytes so that particles capture all the analyte present in solution. Biomarker harvesting nanoparticles may be useful for discovery of novel diagnostic analytes, can increase the sensitivity of detection for analytical methods such as immunoassays and MS, and protect labile biomarkers from degradation during collection, shipment and storage. In paper II and paper III, applications of hydrogel nanoparticles to serum samples from cancer patients are reported. Hydrogel nanoparticles were integrated in a mass spectrometry based workflow for the discovery of candidate biomarkers. Lists of candidate biomarkers were identified that are under verification and validation. In paper IV and V hydrogel nanoparticles functionalized with dyes, were employed to increase the sensitivity of diagnostic test for Lyme disease and to detect human growth hormone (hGH) in urine samples. In paper VI, titanium dioxide (TiO2) microparticles were used to pack fused silica capillary column and used to capture and enrich phosphopeptides in vitreous samples. In paper VII, Empore disk membranes were used to capture organophosphates (OPEs) flame retardant from air samples. Empore disk membranes were used as on- line extraction followed by reverse phase liquid chromatography tandem mass spectrometry (RPLC-MS/MS) analysis. Optimized “geometry” settings were used to strip semi volatile and volatile compounds from C8 membrane. This novel design allowed for a better analyte focusing in the HPLC column, reduced the volume of the organic solvent employed for the extraction and the analysis time, and eliminated sample contamination, and loss of analyte.

Place, publisher, year, edition, pages
Stockholm: Department of Analytical Chemistry, Stockholms University, 2011. 110 p.
Keyword
biomarkers, nanogels, solid-phase extraction, organophosphate esters, peptides, mass spectrometry
National Category
Analytical Chemistry
Research subject
Analytical Chemistry
Identifiers
urn:nbn:se:su:diva-56873 (URN)978-91-7447-231-8 (ISBN)
Public defence
2011-06-01, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript. Paper 6: Manuscript.Available from: 2011-05-10 Created: 2011-04-28 Last updated: 2011-05-02Bibliographically approved

Open Access in DiVA

No full text

PubMed
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf