Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Chemoenzymatic Dynamic Kinetic Resolution Approach to Enantiomerically Pure (R)- and (S)-Duloxetine
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
Stockholm University, Faculty of Science, Department of Organic Chemistry.
2011 (English)In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 76, no 10, 3917-3921 p.Article in journal (Refereed) Published
Abstract [en]

The synthesis of (R)-duloxetine is described. Dynamic kinetic resolution of β-hydroxynitrile rac-1 using Candida antarctica lipase B (CALB, N435) and ruthenium catalyst 6 afforded β-cyano acetate (R)-2 in high yield and in excellent enantioselectivity (98% ee). The subsequent synthetic steps were straightforward and (R)-duloxetine was isolated in 37% overall yield over 6 steps. The synthetic route also constitute a formal total synthesis of (S)-duloxetine.

Place, publisher, year, edition, pages
2011. Vol. 76, no 10, 3917-3921 p.
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-56948DOI: 10.1021/jo2003665ISI: 000290465700034OAI: oai:DiVA.org:su-56948DiVA: diva2:414085
Available from: 2011-05-02 Created: 2011-05-02 Last updated: 2014-10-23Bibliographically approved
In thesis
1. Asymmetric transformation of ß- and γ-functionalized alcohols: Study of combined ruthenium-catalyzed racemization and enzymatic resolution
Open this publication in new window or tab >>Asymmetric transformation of ß- and γ-functionalized alcohols: Study of combined ruthenium-catalyzed racemization and enzymatic resolution
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The major part of this thesis describes the asymmetric synthesis of β- and γ-amino alcohols through the combination of ruthenium catalyzed racemization and enzymatic kinetic resolution.

The dynamic kinetic resolution, DKR, protocol for chlorohydrins was improved by employing Bäckvall’s catalyst, which is a base activated racemization catalyst, in combination with Burkholderia cepacia lipase. These optimized conditions broadened the substrate scope and improved the yields and ee’s of the obtained chlorohydrin acetates. The utility of the method was demonstrated in the synthesis of (S)-salbutamol.

In the second part of the thesis, DKR was utilized in the enantio-determining step of the total synthesis of (R)-duloxetine. Optimized DKR conditions, combining Bäckvall’s catalyst together with Candida antarctica lipase B, afforded a β-cyano acetate in high yield and ee. (R)-Duloxetine was accessible through synthetic alterations of the enantioenriched β-cyano acetate in high overall yield.

A dynamic kinetic asymmetric transformation, DYKAT, protocol to obtain enantio- and diastereomerically pure γ-amino alcohols was developed. In a first step N-Boc-aminoketones were obtained in high enantiomeric purity through a proline-catalyzed Mannich reaction. Subsequent in situ reduction coupled with a highly efficient DYKAT yielded γ-amino acetates in high dr and ee. The γ-amino alcohols were available through simple hydrolysis/deprotection with retained stereochemistry.

In the final part of the thesis a heterogeneous bifunctional catalytic system is reported, which combines the catalytic properties of transition metal-catalyzed racemization with enzymatic acylation. A novel ruthenium-phosphonate complex was synthesized and then covalently anchored to the active site of solid supported Candida antarctica lipase B. The partially inhibited beads proved to be catalytically active both in racemization as well as enzymatic acylation.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2011. 91 p.
Keyword
Kinetic resolution, dynamic kinetic resolution, kinetic asymmetric transformation, dynamic kinetic asymmetric transformation, enzyme catalysis, racemization, asymmetric synthesis, chlorohydrin, cyano acetate, amino alcohol, metalloenzyme, bifunctional catalytic system
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-56947 (URN)978-91-7447-307-0 (ISBN)
Public defence
2011-06-10, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 14:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: Epub ahead of print.Available from: 2011-05-13 Created: 2011-05-02 Last updated: 2011-06-15Bibliographically approved
2. Enzyme- and Transition Metal-Catalyzed Asymmetric Transformations: Application of Enzymatic (D)KR in Enantioselective Synthesis
Open this publication in new window or tab >>Enzyme- and Transition Metal-Catalyzed Asymmetric Transformations: Application of Enzymatic (D)KR in Enantioselective Synthesis
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Dynamic kinetic resolution (DKR) is a powerful method for obtaining compounds with high optical purity. The process relies on the combination of a kinetic resolution with an in situ racemization. In this thesis, a combination of an immobilized hydrolase and a transition metal-based racemization catalyst was employed in DKR to transform racemic alcohols and amines into enantioenriched esters and amides, respectively.

In the first part the DKR of 1,2-amino alcohols with different rings sizes and N-protecting groups is described. We showed that the immobilization method used to support the lipase strongly influenced the stereoselectivity of the reaction.

The second part deals with the DKR of C3-functionalized cyclic allylic alcohols affording the corresponding allylic esters in high yields and high ee’s. The protocol was also extended to include carbohydrate derivatives, leading to inversion of a hydroxyl substituted chiral center on the carbohydrate.

The third part focuses on an improved method for obtaining benzylic primary amines. By using a novel, recyclable catalyst composed of Pd nanoparticles on amino-functionalized mesocellular foam, DKR could be performed at 50 °C. Moreover, Lipase PS was for the first time employed in the DKR of amines.

In the fourth part DKR was applied in the total synthesis of Duloxetine, a compound used in the treatment of major depressive disorder. By performing a six-step synthesis, utilizing DKR in the enantiodetermining step, Duloxetine could be isolated in an overall yield of 37% and an ee >96%.

In the final part we investigated how the enantioselectivty of reactions catalyzed by Candida Antarctica lipase B for δ-substituted alkan-2-ols are influenced by water. The results showed that the enzyme displays much higher enantioselectivity in water than in anhydrous toluene. The effect was rationalized by the creation of a water mediated hydrogen bond in the active site that helps the enzyme form enantiodiscriminating binding modes.

Place, publisher, year, edition, pages
Stockholm: Department of Organic Chemistry, Stockholm University, 2014. 78 p.
Keyword
Dynamic Kinetic Resolution, Kinetic Resolution, Enzyme Catalysis, Asymmetric Synthesis
National Category
Organic Chemistry
Research subject
Organic Chemistry
Identifiers
urn:nbn:se:su:diva-108351 (URN)978-91-7649-008-2 (ISBN)
Public defence
2014-11-27, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrheniusväg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.

Available from: 2014-11-05 Created: 2014-10-22 Last updated: 2016-04-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Träff, AnnikaLihammar, RichardBäckvall, Jan-E.
By organisation
Department of Organic Chemistry
In the same journal
Journal of Organic Chemistry
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf