Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Anthropogenic aerosol effects on convective cloud microphysical properties in southern Sweden
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Show others and affiliations
2008 (English)In: Tellus. Series B, Chemical and physical meteorology, ISSN 0280-6509, E-ISSN 1600-0889, Vol. 60, no 2, 286-297 p.Article in journal (Refereed) Published
Abstract [en]

In this study, we look for anthropogenic aerosol effects in southern Scandinavia's clouds under the influence of moderate levels of pollution and relatively weak dynamic forcing. This was done by comparing surface aerosol measurements with convective cloud microphysical profiles produced from satellite image analyses. The results show that the clouds associated with the anthropogenic-affected air with high PM0.5, had to acquire a vertical development of similar to 3.5 km before forming precipitation-sized particles, compared to less than 1 km for the clouds associated with low PM0.5 air-masses. Additionally, a comparison of profiles with precipitation was done with regard to different potentially important parameters. For precipitating clouds the variability of the cloud thickness needed to produce the precipitation (Delta h(14)) is directly related to PM0.5 concentrations, even without considering atmospheric stability, the specific aerosol size distribution or the aerosols' chemical composition. Each additional 1 mu g m(-3) of PM0.5 was found to increase Delta h(14) by similar to 200-250 m. Our conclusion is that it is indeed possible to detect the effects of anthropogenic aerosol on the convective clouds in southern Scandinavia despite modest aerosol masses. It also emphasizes the importance of including aerosol processes in climate-radiation models and in numerical weather prediction models.

Place, publisher, year, edition, pages
2008. Vol. 60, no 2, 286-297 p.
Keyword [en]
atmospheric particles, air-pollution, precipitation, suppression, contrasts, urban, smoke, rain
National Category
Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-58566DOI: 10.1111/j.1600-0889.2007.00337.xISI: 000254277200014OAI: oai:DiVA.org:su-58566DiVA: diva2:425274
Note
authorCount :5Available from: 2011-06-21 Created: 2011-06-03 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Tunved, Peter
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Tellus. Series B, Chemical and physical meteorology
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf