Change search
ReferencesLink to record
Permanent link

Direct link
Structures and Energetics for O-2 Formation in Photosystem II
Stockholm University, Faculty of Science, Department of Physics.
2009 (English)In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 42, no 12, 1871-1880 p.Article, review/survey (Refereed) Published
Abstract [en]

Water oxidation, forming O-2 from water and sunlight, is a fundamental process for life on earth. In nature, the enzyme photosystem II (PSII) catalyzes this reaction. The oxygen evolving complex (OEC) the complex within PSII that catalyzes the actual formation of the O-O bond, contains four manganese atoms and one calcium atom connected by oxo bonds. Seven amino acid side chains in the structure, mostly carboxylates, are ligated to the metal atoms. In the study of many enzyme mechanisms, theoretical modeling using density functional theory has served as an indispensable tool. This Account summarizes theoretical research to elucidate,the mechanism for water oxidation in photosynthesis, including the most recent findings. The development of successively larger models, ranging from 50 atoms in the active site up to the present model size of 170 atoms, has revealed the mechanism Of O-2 formation with increasing detail. The X-ray crystal structures of PSII have provided a framework for optimizing the theoretical models. By constraint of the backbone atoms to be at the same positions as those in the X-ray structures, the theoretical structures are in good agreement with both the measured electron density and extended X-ray absorption fine structure (EXAFS) interpretations. By following the structural and energetic changes in those structures through the different steps in the catalytic process, we have modeled the oxidation of the catalytic complex, the binding of the two substrate water molecules, and the subsequent deprotonations of those substrate molecules. In these models, the OEC forms a basin into which the water molecules naturally fit. These findings demonstrate that the binding of the second water molecule causes a reconstruction, results that are consistent with earlier EXAFS measurements. Most importantly, this Account describes a low-barrier mechanism for formation of the O-O bond, involving an oxygen radical that reacts with a mu-oxo ligand of the OEC. Further research revealed that the oxygen radical is bound in the Mn3Ca cube rather than to the outside manganese. This Account provides detailed diagrams of the energetics of the different S-transitions both without and with a membrane gradient. An interesting detail of these reactions concerns the role of the tyrosine (Tyr(z)), which appears as an intermediate radical in the oxidation of the OEC. By simple electrostatic arguments, these results show that the initial oxidation of Tyr(z) is downhill for the first two transitions but uphill for the final ones. In these later transitions, the oxidation of the OEC is coupled to deprotonations of water.

Place, publisher, year, edition, pages
2009. Vol. 42, no 12, 1871-1880 p.
Keyword [en]
o bond formation, oxygen-evolving complex, photosynthetic water oxidation, quantum mechanics/molecular mechanics, ray-absorption spectroscopy, manganese complex, transition, cluster, models, state
National Category
Physical Sciences
URN: urn:nbn:se:su:diva-59378DOI: 10.1021/ar900117kISI: 000273082800003OAI: diva2:429618
authorCount :1Available from: 2011-07-05 Created: 2011-06-27 Last updated: 2011-07-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Siegbahn, Per E. M.
By organisation
Department of Physics
In the same journal
Accounts of Chemical Research
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 29 hits
ReferencesLink to record
Permanent link

Direct link