Change search
ReferencesLink to record
Permanent link

Direct link
On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams
Stockholm University, Faculty of Science, Department of Physics.
2009 (English)In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 54, no 11, n205-N215 p.Article in journal (Refereed) Published
Abstract [en]

The 'sub-millimetre precision' often claimed to be achievable in protons and light ion beam therapy is analysed using the Monte Carlo code SHIELD-HIT for a broad range of energies. Based on the range of possible values and uncertainties of the mean excitation energy of water and human tissues, as well as of the composition of organs and tissues, it is concluded that precision statements deserve careful reconsideration for treatment planning purposes. It is found that the range of I-values of water stated in ICRU reports 37, 49 and 73 (1984, 1993 and 2005) for the collision stopping power formulae, namely 67 eV, 75 eV and 80 eV, yields a spread of the depth of the Bragg peak of protons and heavier charged particles (carbon ions) of up to 5 or 6 mm, which is also found to be energy dependent due to other energy loss competing interaction mechanisms. The spread is similar in protons and in carbon ions having analogous practical range. Although accurate depth-dose distribution measurements in water can be used at the time of developing empirical dose calculation models, the energy dependence of the spread causes a substantial constraint. In the case of in vivo human tissues, where distribution measurements are not feasible, the problem poses a major limitation. In addition to the spread due to the currently accepted uncertainties of their I-values, a spread of the depth of the Bragg peak due to the varying compositions of soft tissues is also demonstrated, even for cases which could be considered practically identical in clinical practice. For these, the spreads found were similar to those of water or even larger, providing support to international recommendations advising that body-tissue compositions should not be given the standing of physical constants. The results show that it would be necessary to increase the margins of a clinical target volume, even in the case of a water phantom, due to an 'intrinsic basic physics uncertainty', adding to those margins usually considered in normal clinical practice due to anatomical or therapeutic strategy reasons. Individualized patient determination of tissue composition along the complete beam path, rather than CT Hounsfield numbers alone, would also probably be required even to reach 'sub-centimetre precision'.

Place, publisher, year, edition, pages
2009. Vol. 54, no 11, n205-N215 p.
Keyword [en]
stopping power, therapy, range, verification, dosimetry, ions
National Category
Physical Sciences
URN: urn:nbn:se:su:diva-60045DOI: 10.1088/0031-9155/54/11/N01ISI: 000266208200022OAI: diva2:433779
authorCount :1Available from: 2011-08-11 Created: 2011-08-08 Last updated: 2011-08-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Andreo, Pedro
By organisation
Department of Physics
In the same journal
Physics in Medicine and Biology
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 16 hits
ReferencesLink to record
Permanent link

Direct link