Change search
ReferencesLink to record
Permanent link

Direct link
Theoretical study of the hydroxylation of phenolates by the Cu2O2(N,N '-dimethylethylenediamine)(2)(2+) complex
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2009 (English)In: Journal of Biological Inorganic Chemistry, ISSN 0949-8257, E-ISSN 1432-1327, Vol. 14, no 2, 229-242 p.Article in journal (Refereed) Published
Abstract [en]

Tyrosinase catalyzes the ortho hydroxylation of monophenols and the subsequent oxidation of the diphenolic products to the resulting quinones. In efforts to create biomimetic copper complexes that can oxidize C-H bonds, Stack and coworkers recently reported a synthetic mu-eta(2):eta(2)-peroxodicopper(II)(DBED)(2) complex ( DBED is N,N'-di-tert-butylethylenediamine), which rapidly hydroxylates phenolates. A reactive intermediate consistent with a bis-mu-oxo-dicopper(III)-phenolate complex, with the O-O bond fully cleaved, is observed experimentally. Overall, the evidence for sequential O-O bond cleavage and C-O bond formation in this synthetic complex suggests an alternative mechanism to the concerted or late-stage O-O bond scission generally accepted for the phenol hydroxylation reaction performed by tyrosinase. In this work, the reaction mechanism of this peroxodicopper(II) complex was studied with hybrid density functional methods by replacing DBED in the mu-eta(2):eta(2)-peroxodicopper(II)(DBED)(2) complex by N,N'-dimethylethylenediamine ligands to reduce the computational costs. The reaction mechanism obtained is compared with the existing proposals for the catalytic ortho hydroxylation of monophenol and the subsequent oxidation of the diphenolic product to the resulting quinone with the aim of gaining some understanding about the copper-promoted oxidation processes mediated by 2: 1 Cu(I)O-2-derived species.

Place, publisher, year, edition, pages
2009. Vol. 14, no 2, 229-242 p.
Keyword [en]
Tyrosinase, Copper enzymes, Biomimetic metal complexes, O-2 cleavage, Density functional theory
National Category
Biochemistry and Molecular Biology Physical Sciences
URN: urn:nbn:se:su:diva-60243DOI: 10.1007/s00775-008-0443-yISI: 000264102000008OAI: diva2:434163
authorCount :4Available from: 2011-08-12 Created: 2011-08-11 Last updated: 2011-08-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Siegbahn, Per E. M.
By organisation
Department of Biochemistry and Biophysics
In the same journal
Journal of Biological Inorganic Chemistry
Biochemistry and Molecular BiologyPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 40 hits
ReferencesLink to record
Permanent link

Direct link