Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tryptophan residues promote membrane association for a plant lipid glycosyltransferase involved in phosphate stress
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2011 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 286, no 8, 6669-6684 p.Article in journal (Refereed) Published
Abstract [en]

Chloroplast membranes contain a substantial excess of the nonbilayer-prone monogalactosyldiacylglycerol (GalDAG) over the biosynthetically consecutive, bilayer-forming digalactosyldiacylglycerol (GalGalDAG), yielding a high membrane curvature stress. During phosphate shortage, plants replace phospholipids with GalGalDAG to rescue phosphate while maintaining membrane homeostasis. Here we investigate how the activity of the corresponding glycosyltransferase (GT) in Arabidopsis thaliana (atDGD2) depends on local bilayer properties by analyzing structural and activity features of recombinant protein. Fold recognition and sequence analyses revealed a two-domain GT-B monotopic structure, present in other plant and bacterial glycolipid GTs, such as the major chloroplast GalGalDAG GT atDGD1. Modeling led to the identification of catalytically important residues in the active site of atDGD2 by site-directed mutagenesis. The DGD synthases share unique bilayer interface segments containing conserved tryptophan residues that are crucial for activity and for membrane association. More detailed localization studies and liposome binding analyses indicate differentiated anchor and substrate-binding functions for these separated enzyme interface regions. Anionic phospholipids, but not curvature-increasing nonbilayer lipids, strongly stimulate enzyme activity. From our studies, we propose a model for bilayer "control" of enzyme activity, where two tryptophan segments act as interface anchor points to keep the substrate region close to the membrane surface. Binding of the acceptor substrate is achieved by interaction of positive charges in a surface cluster of lysines, arginines, and histidines with the surrounding anionic phospholipids. The diminishing phospholipid fraction during phosphate shortage stress will then set the new GalGalDAG/phospholipid balance by decreasing stimulation of atDGD2.

Place, publisher, year, edition, pages
2011. Vol. 286, no 8, 6669-6684 p.
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-62029DOI: 10.1074/jbc.M110.138495ISI: 000287476400075OAI: oai:DiVA.org:su-62029DiVA: diva2:439463
Available from: 2011-09-07 Created: 2011-09-07 Last updated: 2017-12-08Bibliographically approved
In thesis
1. Property-controlling Enzymes at the Membrane Interface
Open this publication in new window or tab >>Property-controlling Enzymes at the Membrane Interface
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Monotopic proteins represent a specialized group of membrane proteins in that they are engaged in biochemical events taking place at the membrane interface. In particular, the monotopic lipid-synthesizing enzymes are able to synthesize amphiphilic lipid products by catalyzing two biochemically distinct molecules (substrates) at the membrane interface. Thus, from an evolutionary point of view, anchoring into the membrane interface enables monotopic enzymes to confer sensitivity to a changing environment by regulating their activities in the lipid biosynthetic pathways in order to maintain a certain membrane homeostasis. We are focused on a plant lipid-synthesizing enzyme DGD2 involved in phosphate shortage stress, and analyzed the potentially important lipid anchoring segments of it, by a set of biochemical and biophysical approaches. A mechanism was proposed to explain how DGD2 adjusts its activity to maintain a proper membrane. In addition, a multivariate-based bioinformatics approach was used to predict the lipid-binding segments for GT-B fold monotopic enzymes. In contrast, a soluble protein Myr1 from yeast, implicated in vesicular traffic, was also proposed to be a membrane stress sensor as it is able to exert different binding properties to stressed membranes, which is probably due to the presence of strongly plus-charged clusters in the protein. Moreover, a bacterial monotopic enzyme MGS was found to be able to induce massive amounts of intracellular vesicles in Escherichia coli cells. The mechanisms involve several steps: binding, bilayer lateral expansion, stimulation of lipid synthesis, and membrane bending. Proteolytic and mutant studies indicate that plus-charged residues and the scaffold-like structure of MGS are crucial for the vesiculation process. Hence, a number of features are involved governing the behaviour of monotopic membrane proteins at the lipid bilayer interface.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2011. 80 p.
Keyword
monotopic membrane protein, lipid-protein interaction, membrane curvature, glycosyltransferase, Rossmann fold
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-61988 (URN)978-91-7447-330-8 (ISBN)
Public defence
2011-10-21, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 5: Manuscript.Available from: 2011-09-29 Created: 2011-09-06 Last updated: 2011-11-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ge, ChangrongWieslander, Åke
By organisation
Department of Biochemistry and Biophysics
In the same journal
Journal of Biological Chemistry
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf