Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The 44Ti-powered spectrum of SN 1987A
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
2011 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 530, A45- p.Article in journal (Refereed) Published
Abstract [en]

SN 1987A provides a unique opportunity to study the evolution of a supernova from explosion into very late phases. Owing to the rich chemical structure, the multitude of physical processes involved and extensive radiative transfer effects, detailed modeling is needed to interpret the emission from this and other supernovae. In this paper, we analyze the late-time (about eight years) Hubble Space Telescope spectrum of the SN 1987A ejecta, where 44Ti is the dominant power source. Based on an explosion model for a 19 Msun progenitor, we compute a model spectrum by calculating the degradation of positrons and gamma-rays from the radioactive decays, solving the equations governing temperature, ionization balance and NLTE level populations, and treating the radiative transfer with a Monte Carlo technique. We obtain a UV/optical/NIR model spectrum that reproduces most of the lines in the observed spectrum with good accuracy. We find non-local radiative transfer in atomic lines to be an important process also at this late stage of the supernova, with 30% of the emerging flux in the optical and NIR coming from scattering/fluorescence. We investigate the question of where the positrons deposit their energy, and favor the scenario where they are locally trapped in the Fe/He clumps by a magnetic field. Energy deposition into these largely neutral Fe/He clumps makes Fe I lines prominent in the emerging spectrum. With the best available estimates for the dust extinction, we determine the amount of 44Ti produced in the explosion to be 1.5+-0.5 Msun.

Place, publisher, year, edition, pages
2011. Vol. 530, A45- p.
Keyword [en]
supernova, 1987A
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Astronomy
Identifiers
URN: urn:nbn:se:su:diva-63934DOI: 10.1051/0004-6361/201015937ISI: 000291027400045OAI: oai:DiVA.org:su-63934DiVA: diva2:453540
Available from: 2011-11-02 Created: 2011-11-02 Last updated: 2017-12-08Bibliographically approved
In thesis
1. Spectral modeling of nebular-phase supernovae
Open this publication in new window or tab >>Spectral modeling of nebular-phase supernovae
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Massive stars live fast and die young. They shine furiously for a few million years, during which time they synthesize most of the heavy elements in the universe in their cores. They end by blowing themselves up in a powerful explosion known as a supernova (SN). During this process, the core collapses to a neutron star or a black hole, while the outer layers are expelled with velocities of thousands of kilometers per second. The resulting fireworks often outshine the entire host galaxy for many weeks. The explosion energy is eventually radiated away, but powering of the newborn nebula continues by radioactive isotopes synthesized in the explosion. The ejecta are now quite transparent, and we can see the material produced in the deep interiors of the star. To interpret the observations, detailed spectral modeling is needed. This thesis aims to develop and apply state-of-the-art computational tools for interpreting and modeling SN observations in the nebular phase. This requires calculation of the physical conditions throughout the nebula, including non-thermal processes from the radioactivity, thermal and statistical equilibrium, as well as radiative transport. The inclusion of multiline radiative transfer, which we compute with a Monte Carlo technique, represents one of the major advancements presented in this thesis. On February 23 1987, the first SN observable by the naked eye since 1604 exploded, SN 1987A. Its proximity has allowed unprecedented observations, which in turn have lead to significant advancements in our understanding of SN explosions. As a first application of our model, we analyze the 44Tipowered phase (t & 5 years) of SN 1987A. We find that a magnetic field is present in the nebula, trapping the positrons that provide the energy input, and resulting in strong iron lines in the spectrum. We determine the 44Ti mass to 1.5(+0.5−0.5)*10−4 M⊙. From the near-infrared spectrum at an age of 19 years, we identify strong emission lines from explosively synthesized metals such as silicon, calcium, and iron. We use integral-field spectroscopy to construct three-dimensional maps of the ejecta, showing a morphology suggesting an asymmetric explosion. The model is then applied to the close-by and well-observed Type IIP SN 2004et, analyzing its ultraviolet to mid-infrared evolution. Based on its Mg I] 4571 Å, Na I 5890, 5896 Å, [O I] 6300, 6364 Å, and [Ne II] 12.81 mm nebular emission lines, we determine its progenitor mass to be around 15 M⊙. We confirm that silicate dust, SiO, and CO have formed in the ejecta. Finally, the major optical emission lines in a sample of Type IIP SNe areanalyzed.We find that most spectral regions in Type IIP SNe are dominated by emission from the massive hydrogen envelope, which explains the relatively small variation seen in the sample. We also show that the similar line profiles seen from all elements suggest extensive mixing occurring in most hydrogenrich SNe.

Place, publisher, year, edition, pages
Stockholm: Department of Astronomy, Stockholm University, 2011. 86 p.
Keyword
supernovae, nucleosynthesis, radiative transfer, massive stars, 1987A, IIP, supernovor, nukleosyntes, spektralmodellering, strålningstransport, massiva stjärnor, 1987A, IIP
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Astronomy
Identifiers
urn:nbn:se:su:diva-64130 (URN)978-91-7447-407-7 (ISBN)
Public defence
2011-12-16, sal FB52, AlbaNova universitetscentrum, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Accepted. Available from: 2011-11-24 Created: 2011-11-09 Last updated: 2011-11-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Jerkstrand, AndersFransson, ClaesKozma, Cecilia
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf