Change search
ReferencesLink to record
Permanent link

Direct link
Nonshivering thermogenesis and its adequate measurement in metabolic studies
Stockholm University, Faculty of Science, The Wenner-Gren Institute .
Stockholm University, Faculty of Science, The Wenner-Gren Institute .
2011 (English)In: Journal of Experimental Biology, ISSN 0022-0949, Vol. 214, no Pt 2, 242-53 p.Article in journal (Refereed) Published
Abstract [en]

Alterations in nonshivering thermogenesis are presently discussed as being both potentially causative of and able to counteract obesity. However, the necessity for mammals to defend their body temperature means that the ambient temperature profoundly affects the outcome and interpretation of metabolic experiments. An adequate understanding and assessment of nonshivering thermogenesis is therefore paramount for metabolic studies. Classical nonshivering thermogenesis is facultative, i.e. it is only activated when an animal acutely requires extra heat (switched on in minutes), and adaptive, i.e. it takes weeks for an increase in capacity to develop. Nonshivering thermogenesis is fully due to brown adipose tissue activity; adaptation corresponds to the recruitment of this tissue. Diet-induced thermogenesis is probably also facultative and adaptive and due to brown adipose tissue activity. Although all mammals respond to injected/infused norepinephrine (noradrenaline) with an increase in metabolism, in non-adapted mammals this increase mainly represents the response of organs not involved in nonshivering thermogenesis; only the increase after adaptation represents nonshivering thermogenesis. Thermogenesis (metabolism) should be expressed per animal, and not per body mass [not even to any power (0.75 or 0.66)]. A 'cold tolerance test' does not examine nonshivering thermogenesis capacity; rather it tests shivering capacity and endurance. For mice, normal animal house temperatures are markedly below thermoneutrality, and the mice therefore have a metabolic rate and food consumption about 1.5 times higher than their intrinsic requirements. Housing and examining mice at normal house temperatures carries a high risk of identifying false positives for intrinsic metabolic changes; in particular, mutations/treatments that affect the animal's insulation (fur, skin) may lead to such problems. Correspondingly, true alterations in intrinsic metabolic rate remain undetected when metabolism is examined at temperatures below thermoneutrality. Thus, experiments with animals kept and examined at thermoneutrality are likely to yield an improved possibility of identifying agents and genes important for human energy balance.

Place, publisher, year, edition, pages
2011. Vol. 214, no Pt 2, 242-53 p.
Keyword [en]
brown adipose tissue, norepinephrine, adaptive thermogenesis, facultative thermogenesis, cold tolerance
National Category
URN: urn:nbn:se:su:diva-65639DOI: 10.1242/jeb.050989ISI: 000292159200025PubMedID: 21177944OAI: diva2:464325
Available from: 2011-12-13 Created: 2011-12-13 Last updated: 2012-01-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Cannon, BarbaraNedergaard, Jan
By organisation
The Wenner-Gren Institute
In the same journal
Journal of Experimental Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 198 hits
ReferencesLink to record
Permanent link

Direct link