Change search
ReferencesLink to record
Permanent link

Direct link
Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges
Show others and affiliations
2010 (English)In: Space Science Reviews, ISSN 0038-6308, E-ISSN 1572-9672, Vol. 156, no 04-jan, 13-72 p.Article, review/survey (Refereed) Published
Abstract [en]

We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes-ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination-is reviewed. Emphasis is placed on those key reactions that have been identified, by sensitivity analyses, as 'crucial' in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalyzed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.

Place, publisher, year, edition, pages
2010. Vol. 156, no 04-jan, 13-72 p.
Keyword [en]
Astrochemistry, Reaction rate coefficients, Gas-phase chemistry, Grain-surface chemistry, Chemical modelling, Uncertainty propagation, Sensitivity analysis
National Category
Natural Sciences
URN: urn:nbn:se:su:diva-66256DOI: 10.1007/s11214-010-9712-5ISI: 000287758700002OAI: diva2:467351
authorCount :13Available from: 2011-12-19 Created: 2011-12-19 Last updated: 2011-12-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Geppert, Wolf D.
By organisation
Department of Physics
In the same journal
Space Science Reviews
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 14 hits
ReferencesLink to record
Permanent link

Direct link