Change search
ReferencesLink to record
Permanent link

Direct link
Penetration without cells: Membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles
Stockholm University, Faculty of Science, Department of Neurochemistry.
Show others and affiliations
2011 (English)In: Journal of Controlled Release, ISSN 0168-3659, E-ISSN 1873-4995, Vol. 153, no 2, 117-125 p.Article in journal (Refereed) Published
Abstract [en]

The cellular internalization of cell-penetrating peptides (CPPs) is proposed to take place by both endocytic processes and by a direct translocation across the plasma membrane. So far only scarce data is available about what determines the choice between the two uptake routes, or the proportion of used pathways when both are active simultaneously. Furthermore, the mechanism(s) of membrane penetration by peptides is itself still a matter of debate. We have introduced the giant plasma membrane vesicles (GPNIVs) to study the interaction of six well-described CPPs (fluorescently labeled nona-arginine, Tat peptide, Penetratin, MAP, Transportan and TP10) in a model system of native plasma membrane without the interference of endocytic processes. The membranes of GPMVs are shown to segregate into liquid-ordered and liquid-disordered phases at low temperatures and we demonstrate here by confocal microscopy that amphipathic CPPs preferentially associate with liquid-disordered membrane areas. Moreover, all tested CPPs accumulate into the lumen of GPMVs both at ambient and low temperature. The uncharged control peptide and dextran, in contrary, do not translocate from the medium into the lumen of vesicles. The absence of energy-dependent cellular processes and the impermeability to hydrophilic macromolecules makes the GPMVs a useful model to study the translocation of CPPs across the plasma membrane in conditions lacking endocyrosis.

Place, publisher, year, edition, pages
2011. Vol. 153, no 2, 117-125 p.
Keyword [en]
Lipid phase preference, Penetratin, Transportan, TP10, Tat peptide
National Category
Chemical Sciences Neurosciences
URN: urn:nbn:se:su:diva-66589DOI: 10.1016/j.jconrel.2011.03.011ISI: 000293312900003OAI: diva2:468537

authorCount :7

Available from: 2011-12-21 Created: 2011-12-20 Last updated: 2015-04-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Langel, Ulo
By organisation
Department of Neurochemistry
In the same journal
Journal of Controlled Release
Chemical SciencesNeurosciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 16 hits
ReferencesLink to record
Permanent link

Direct link