Change search
ReferencesLink to record
Permanent link

Direct link
Soil organic carbon storage in the forest-tundra ecotone zone in the North-Eastern Europe
Komi Science Centre.
Komi Science Centre.
Komi Science Centre.
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology.
Show others and affiliations
2011 (English)In: Geophysical Research Abstracts Vol. 13, EGU2011-53, 2011, 2011Conference paper (Other academic)
Abstract [en]

High latitude terrestrial ecosystems are considered key components in the global carbon (C) cycle [McGuire et al.,2009, Hugelius et al., 2010, in press]. Large stocks of soil organic carbon (SOC) have accumulated in Cryosolsand Histosols, where permafrost affects to reduce decomposition rates. In a recent study based on the NorthernCircumpolar Soil Carbon Database (3530 pedons, soil map mean polygon size 259 km2), Tarnocai et al. [2009]estimated soil organic carbon (SOC) stocks in the northern permafrost region to be 1024 Pg (Pg = g x 1015) forthe upper three meters (with Histosols contributing 278 Pg and Cryosols 634 Pg).This study describes detailed partitioning of soil organic carbon (SOC) for the forest-tundra ecotone zone in theborder of the discontinuous and massive island permafrost terrain with MAGT -0.5 to -2.0 C, North-EasternEuropean Russia.Soil cover of the study area is diverse and mosaic and form complexes of soils owing to a variety of microrelief,cryoturbation processes, snow cover distribution, etc. In peat plateau/thermokarst complexes, Cryic Folic Histosolswith shallow permafrost tables are interspersed with Fibric Histosols (permafrost free fens) and Fibric FloaticHistosols (thermokarst lakes in-filling with vegetation). Permafrost-affected mineral soils (Cryosols) are usuallyformed on loamy wind-exposed surfaces under tundra dwarf-shrub vegetation where shallow snow cover preservespermafrost within the soil profile. In these sites, quite thick peaty layers (10-40 cm) also favours shallow permafrostoccurrence (Histic Cryosols). Non-permafrost soils (Gleysols, Cambisols and Albeluvisols) are usually formed insites under tall shrub vegetation where thicker snow cover in winter results in a warmer soil regime. Non-permafrostsoils are developed under forest vegetation (Cambisols and Albeluvisols) and in floodplains (Fluvisols).Georeferenced soil data from field observations were overlaid on Landsat images and a supervised classificationprocedure was carried out. As a result satellite images were coded to raster maps containing soil type informationin pixel classes. The images were then homogenized prior to conversion to vector polygons. Resulting vector mapswere processed as shape files in the software ArcGIS 9.1, where adjacent uniform polygons were merged andcorrected and soil maps were compiled.Mean SOC storage (kg C m-2) for each soil type (SOC only) was calculated as the arithmetic mean of C storagein the sites belonging to that class and was upscale to soil groups in the map.Mean SOC storage for all four study areas combined is estimated to be 39.5 kg C m-2 (soil map and LCC upscalingrespectively). Detailed GIS map of SOC storage can be used to model the potential effect of permafrost thaw onSOC stores.

Place, publisher, year, edition, pages
National Category
Physical Geography
URN: urn:nbn:se:su:diva-66888OAI: diva2:468790
EGU General Assembly 2011
Available from: 2011-12-21 Created: 2011-12-21 Last updated: 2012-01-09Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Hugelius, Gustaf
By organisation
Department of Physical Geography and Quaternary Geology
Physical Geography

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link