Change search
ReferencesLink to record
Permanent link

Direct link
Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: the primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea
Show others and affiliations
2011 (English)In: Biogeosciences, ISSN 1726-4170, Vol. 8, no 9, 2581-2594 p.Article in journal (Refereed) Published
Abstract [en]

Climate warming is amplified in the land-sea system of the East Siberian Arctic, which also holds large pools of vulnerable carbon in permafrost. This coastal area is strongly influenced by sediment and carbon transport from both its large rivers and extensive erosion of Pleistocene permafrost along its coastline. This study is investigating the coastal fate of the sediment and organic carbon delivered to the Buor-Khaya Gulf, which is the first recipient of the overwhelming fluvial discharge from the Lena River and is additionally receiving large input from extensive erosion of the coastal ice-complex (permafrost a. k.a. Yedoma; loess soil with high organic carbon content). Both water column suspended particulate matter (SPM) and surface sediments were sampled at about 250 oceanographic stations in the Gulf in this multi-year effort, including one winter campaign, and analyzed for the distribution and sorting of sediment size, organic carbon content, and stable carbon isotope signals. The composition of the surface sediment suggests an overwhelmingly terrestrial contribution from both river and coastal erosion. The objective of this paper is to improve our understanding of the seasonal (i.e., winter vs summer) and interannual variability of these coastal sedimentation processes and the dynamics of organic carbon (OC) distribution in both the water column SPM and the surface sediments of the Buor-Khaya Gulf. Based on data collected during several years in the period 2000-2008, two different sedimentation regimes were revealed for the Buor-Khaya Gulf, the relative importance of each at a given time depend on hydrometeorological conditions, the Lena River water discharge and sea-ice regime: Type 1 erosion-accumulation and Type 2 accumulation. The Type 1 erosion-accumulation sedimentation regime is typical (2000-2006) for the ice-free period of the year (here considered in detail for August 2005). Under such conditions terrigenous sources of SPM and particulate organic carbon (POC) stem predominantly from river discharge, thermal erosion of coastal ice-complex and remobilized bottom sediments. The Type 2 accumulation sedimentation regime develops under ice-covered conditions, and only occasionally during the ice-free period (August 2008). In Type 2 winter, combined terrigenous and marine-biogenic SPM and POC sources are dominating due to relatively low overall terrigenous input (April 2007). In Type 2 summer, river alluvium becomes the major SPM and POC source (August 2008). The water column SPM and POC loadings vary by more than a factor of two between the two regimes. This study underscores the necessity of multi-year investigations to better understand the functioning of the primary recipient of terrestrially expulsed matter in the East Siberian Arctic.

Place, publisher, year, edition, pages
2011. Vol. 8, no 9, 2581-2594 p.
National Category
Ecology Geosciences, Multidisciplinary
URN: urn:nbn:se:su:diva-66877DOI: 10.5194/bg-8-2581-2011ISI: 000295375700013OAI: diva2:468956
authorCount :8Available from: 2011-12-22 Created: 2011-12-21 Last updated: 2011-12-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Karlsson, EmmaGustafsson, Örjan
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
EcologyGeosciences, Multidisciplinary

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 23 hits
ReferencesLink to record
Permanent link

Direct link