Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
NrdH-Redoxin Protein Mediates High Enzyme Activity in Manganese-reconstituted Ribonucleotide Reductase from Bacillus anthracis
Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
Show others and affiliations
2011 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 286, no 38, 33053-33060 p.Article in journal (Refereed) Published
Abstract [en]

Bacillus anthracis is a severe mammalian pathogen encoding a class Ib ribonucleotide reductase (RNR). RNR is a universal enzyme that provides the four essential deoxyribonucleotides needed for DNA replication and repair. Almost all Bacillus spp. encode both class Ib and class III RNR operons, but the B. anthracis class III operon was reported to encode a pseudogene, and conceivably class Ib RNR is necessary for spore germination and proliferation of B. anthracis upon infection. The class Ib RNR operon in B. anthracis encodes genes for the catalytic NrdE protein, the tyrosyl radical metalloprotein NrdF, and the flavodoxin protein NrdI. The tyrosyl radical in NrdF is stabilized by an adjacent Mn(2)(III) site (Mn-NrdF) formed by the action of the NrdI protein or by a Fe(2)(III) site (Fe-NrdF) formed spontaneously from Fe(2+) and O(2). In this study, we show that the properties of B. anthracis Mn-NrdF and Fe-NrdF are in general similar for interaction with NrdE and NrdI. Intriguingly, the enzyme activity of Mn-NrdF was approximately an order of magnitude higher than that of Fe-NrdF in the presence of the class Ib-specific physiological reductant NrdH, strongly suggesting that the Mn-NrdF form is important in the life cycle of B. anthracis. Whether the Fe-NrdF form only exists in vitro or whether the NrdF protein in B. anthracis is a true cambialistic enzyme that can work with either manganese or iron remains to be established.

Place, publisher, year, edition, pages
2011. Vol. 286, no 38, 33053-33060 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:su:diva-66544DOI: 10.1074/jbc.M111.278119ISI: 000294968800024OAI: oai:DiVA.org:su-66544DiVA: diva2:469763
Note
authorCount :9Available from: 2011-12-27 Created: 2011-12-20 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sahlin, MargaretaSjöberg, Britt-Marie
By organisation
Department of Molecular Biology and Functional Genomics
In the same journal
Journal of Biological Chemistry
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 130 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf