Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of the helical tomotherapy against the multileaf collimator-based intensity-modulated radiotherapy and 3D conformal radiation modalities in lung cancer radiotherapy
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
2011 (English)In: British Journal of Radiology, ISSN 0007-1285, E-ISSN 1748-880X, Vol. 84, no 998, 161-172 p.Article in journal (Refereed) Published
Abstract [en]

Objectives: The aim of this study was to compare three-dimensional (3D) conformal radiotherapy and the two different forms of IMRT in lung cancer radiotherapy. Methods: Cases of four lung cancer patients were investigated by developing a 3D conformal treatment plan, a linac MLC-based step-and-shoot IMRT plan and an HT plan for each case. With the use of the complication-free tumour control probability (P(+)) index and the uniform dose concept as the common prescription point of the plans, the different treatment plans were compared based on radiobiological measures. Results: The applied plan evaluation method shows the MLC-based IMRT and the HT treatment plans are almost equivalent over the clinically useful dose prescription range; however, the 3D conformal plan inferior. At the optimal dose levels, the 3D conformal treatment plans give an average P(+) of 48.1% for a effective uniform dose to the internal target volume (ITV) of 62.4 Gy, whereas the corresponding MLC-based IMRT treatment plans are more effective by an average Delta P(+) of 27.0% for a D effective uniform dose of 16.3 Gy. Similarly, the HT treatment plans are more effective than the 3D-conformal plans by an average Delta P(+) of 23.8% for a Delta effective uniform dose of 11.6 Gy. Conclusion: A radiobiological treatment plan evaluation can provide a closer association of the delivered treatment with the clinical outcome by taking into account the dose-response relations of the irradiated tumours and normal tissues. The use of P - effective uniform dose diagrams can complement the traditional tools of evaluation to compare and effectively evaluate different treatment plans.

Place, publisher, year, edition, pages
2011. Vol. 84, no 998, 161-172 p.
Keyword [en]
Radiology, Nuclear Medicine, Medical Imaging
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:su:diva-67364DOI: 10.1259/bjr/89275085ISI: 000286461700014OAI: oai:DiVA.org:su-67364DiVA: diva2:470137
Note
authorCount :8Available from: 2011-12-28 Created: 2011-12-28 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Mavroidis, Panayiotis
By organisation
Department of Physics
In the same journal
British Journal of Radiology
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf