We study the mediation of supersymmetry breaking in string compactifications whose moduli are stabilized by nonperturbative effects. We begin with a critical review of arguments for sequestering in supergravity and in string theory. We then show that geometric isolation, even in a highly warped space, is insufficient to achieve sequestering: in type IIB compactifications, nonperturbative superpotentials involving the Kahler moduli introduce cross-couplings between well-separated visible and hidden sectors. The scale of the resulting soft terms depends on the moduli stabilization scenario. In the Large Volume Scenario, nonperturbative superpotential contributions to the soft trilinear A terms can introduce significant flavor violation, while in KKLT compactifications their effects are negligible. In both scenarios, the contributions to the mu and B mu parameters cannot be ignored in general. We conclude that sequestered supersymmetry breaking is possible in nonperturbatively-stabilized compactifications only if a mechanism in addition to bulk locality suppresses superpotential cross-couplings.