Change search
ReferencesLink to record
Permanent link

Direct link
Catchment-scale estimates of flow path partitioning and water storage based on transit time and runoff modelling
Stockholm University, Faculty of Science, Department of Physical Geography and Quaternary Geology. (Hydrologi, hydrogeologi och vattenresurser)
2011 (English)In: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 25, no 25, 3960-3976 p.Article in journal (Refereed) Published
Abstract [en]

Tracer-derived mean transit times (MTT) and rainfallrunoff modelling were used to explore stream flow generation in 14 Scottish catchments. Both approaches conceptualise the partitioning, storage, and release of water at the catchment scale. The study catchments were predominantly upland and ranged from 0.5 to 1800?km2. Lumped convolution integral models using tracer inputoutput relationships generally provided well-constrained MTT estimates using a gamma function as the transit time distribution. These ranged from 60?days to >10?years and are mainly controlled by catchment soil cover and drainage density. The HBV model was calibrated using upper and lower storage layers to conceptualise rapidly responding near-surface flow paths and slower groundwater contributions to runoff. Calibrated parameters that regulate groundwater recharge and partitioning between the two storages were reasonably well-identified and correlations with MTTs. The most clearly identified parameters and those with the strongest correlations with MTT and landscape controls (particularly soil cover) were the recession coefficients which control the release of water from the upper and lower storage layers. There was also strong correlation between the dynamic storage estimated by HBV and the total catchment storage inferred by tracer damping, although the latter was usually two orders of magnitude greater. This is explained by the different storages estimated: while the total storage inferred by tracers also includes the passive storage involved in mixing, the model estimates dynamic storage from water balance considerations. The former can be interpreted as relating to total porosity, whereas the latter rather corresponds to the drainable porosity. As MTTs for Scottish the uplands can be estimated from catchment characteristics, landscape analysis can be used to constrain sensitive model parameters when modelling in ungauged basins. Furthermore, the dynamic storage inferred by HBV may also be used to provide a first approximation of minimum total catchment storage. Copyright (c) 2011 John Wiley & Sons, Ltd.

Place, publisher, year, edition, pages
2011. Vol. 25, no 25, 3960-3976 p.
Keyword [en]
tracers, transit times, rainfall-runoff modelling, runoff processes, storage, hbv, ungauged basins, residence times, process conceptualization, spatial interpolation, mesoscale catchment, upland catchments, stream water, rainfall, tracer, uncertainty, topography
National Category
Oceanography, Hydrology, Water Resources
Research subject
Hydrology; Hydrology
URN: urn:nbn:se:su:diva-67693ISI: 000297577700013OAI: diva2:470871
Sp. Iss. SI 855PW Times Cited:2 Cited References Count:61Available from: 2011-12-30 Created: 2011-12-30 Last updated: 2012-01-09Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Seibert, J.
By organisation
Department of Physical Geography and Quaternary Geology
In the same journal
Hydrological Processes
Oceanography, Hydrology, Water Resources

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 28 hits
ReferencesLink to record
Permanent link

Direct link