Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
4D analysis of influence of patient movement and anatomy alteration on the quality of 3D U/S-based prostate HDR brachytherapy treatment delivery
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
2011 (English)In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 38, no 9, 4982-4993 p.Article in journal (Refereed) Published
Abstract [en]

Purpose: Modern HDR brachytherapy treatment for prostate cancer based on the 3D ultrasound (U/S) plays increasingly important role. The purpose of this study is to investigate possible patient movement and anatomy alteration between the clinical image set acquisition, made after the needle implantation, and the patient irradiation and their influence on the quality of treatment. Methods: The authors used 3D U/S image sets and the corresponding treatment plans based on a 4D-treatment planning procedure: plans of 25 patients are obtained right after the needle implantation (clinical plan is based on this 3D image set) and just before and after the treatment delivery. The authors notice the slight decrease of treatment quality with increase of time gap between the clinical image set acquisition and the patient irradiation. 4D analysis of dose-volume-histograms (DVHs) for prostate: CTV1 - PTV, and urethra, rectum, and bladder as organs at risk (OARs) and conformity index (COIN) is presented, demonstrating the effect of prostate, OARs, and needles displacement. Results: The authors show that in the case that the patient body movement/anatomy alteration takes place, this results in modification of DVHs and radiobiological parameters, hence the plan quality. The observed average displacement of needles (1 mm) and of prostate (0.57 mm) is quite small as compared with the average displacement noted in several other reports [A. A. Martinez et al., Int. J. Radiat. Oncol., Biol., Phys. 49(1), 61-69 (2001); S. J. Damore et al., Int. J. Radiat. Oncol., Biol., Phys. 46(5), 1205-1211 (2000); P. J. Hoskin et al., Radiotherm. Oncol. 68(3), 285-288 (2003); E. Mullokandov et al., Int. J. Radiat. Oncol., Biol., Phys. 58(4), 1063-1071 (2004)] in the literature. Conclusions: Although the decrease of quality of dosimetric and radiobiological parameters occurs, this does not cause clinically unacceptable changes to the 3D dose distribution, according to our clinical protocol. (C) 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3618735]

Place, publisher, year, edition, pages
2011. Vol. 38, no 9, 4982-4993 p.
Keyword [en]
3D US, HDR brachytherapy, prostate, DVH, COIN, radiation biology
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:su:diva-68038DOI: 10.1118/1.3618735ISI: 000294482900008OAI: oai:DiVA.org:su-68038DiVA: diva2:471811
Note
authorCount :8Available from: 2012-01-03 Created: 2012-01-02 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Mavroidis, Panayiotis
By organisation
Department of Physics
In the same journal
Medical physics (Lancaster)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf