Change search
ReferencesLink to record
Permanent link

Direct link
History and scenarios of future development of Baltic Sea eutrophication
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Show others and affiliations
2011 (English)In: Estuarine, Coastal and Shelf Science, ISSN 0272-7714, E-ISSN 1096-0015, Vol. 92, no 3, 307-322 p.Article in journal (Refereed) Published
Abstract [en]

Nutrient loads from watersheds, atmospheric deposition, and cyanobacterial nitrogen fixation have led to eutrophication in the Baltic Sea. Here we give the historical evolution of this, detail some of the specific eutrophication features of the Baltic Sea, and examine future scenarios from climate related changes in the Baltic Sea region. We distinguish northern and southern regions of the Baltic Sea. The northern watersheds have sub-polar climate, are covered by boreal forest and wetlands, are sparsely populated, and the rivers drain into the Gulf of Bothnia. The southern watersheds have a marine influenced temperate climate, are more densely populated and are industrially highly developed. The southern areas are drained by several large rivers, including the representative Oder River. We compare these regions to better understand the present, and future changes in Baltic Sea eutrophication. Comparing the future projections for the two regions, we suggest that in addition to changes in nutrient inputs, increased temperature and precipitation are likely to become important forcings. Rising temperature may increase release of dissolved organic matter (DOM) from soils and may alter the vegetation cover which may in turn lead to changed nutrient and organic matter input to the Baltic Sea. For the southern Oder River catchment a model study of nutrient input is evaluated, MONERIS (Modelling Nutrient Emissions in River Systems). The strong correlation between precipitation, flow and nutrient discharge indicates a likely increase in nutrient concentrations from diffuse sources in future. The nutrients from the Oder River are modified in a lagoon, where removal processes change the stoichiometry, but have only minor effects on the productivity. We suggest that the lagoon and other nearshore areas fulfil important ecological services, especially the removal of large quantities of riverine nitrogen but at the same time are threatened systems due to increasing coastal hypoxia.

Place, publisher, year, edition, pages
2011. Vol. 92, no 3, 307-322 p.
Keyword [en]
eutrophication, climatic changes, land use, models, catchment area, Baltic Sea
National Category
Earth and Related Environmental Sciences
URN: urn:nbn:se:su:diva-68134DOI: 10.1016/j.ecss.2010.12.037ISI: 000291119500002OAI: diva2:472078
authorCount :8Available from: 2012-01-03 Created: 2012-01-03 Last updated: 2012-01-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Humborg, Christoph
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Estuarine, Coastal and Shelf Science
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 182 hits
ReferencesLink to record
Permanent link

Direct link