Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A coupled climate model simulation of Marine Isotope Stage 3 stadial climate
Show others and affiliations
2011 (English)In: Climate of the Past, ISSN 1814-9324, E-ISSN 1814-9332, Vol. 7, no 2, p. 649-670Article in journal (Refereed) Published
Abstract [en]

We present a coupled global climate model (CGCM) simulation, integrated for 1500 yr to quasi-equilibrium, of a stadial (cold period) within Marine Isotope Stage 3 (MIS 3). The simulated Greenland stadial 12 (GS12; similar to 44 ka BP) annual global mean surface temperature (T(s)) is 5.5 degrees C lower than in the simulated recent past (RP) climate and 1.3 degrees C higher than in the simulated Last Glacial Maximum (LGM; 21 ka BP) climate. The simulated GS12 is evaluated against proxy data and previous modelling studies of MIS3 stadial climate. We show that the simulated MIS 3 climate, and hence conclusions drawn regarding the dynamics of this climate, is highly model-dependent. The main findings are: (i) Proxy sea surface temperatures (SSTs) are higher than simulated SSTs in the central North Atlantic, in contrast to earlier simulations of MIS 3 stadial climate in which proxy SSTs were found to be lower than simulated SST. (ii) The Atlantic Meridional Overturning Circulation (AMOC) slows down by 50% in the GS12 climate as compared to the RP climate. This slowdown is attained without freshwater forcing in the North Atlantic region, a method used in other studies to force an AMOC shutdown. (iii) El-Nino-Southern Oscillation (ENSO) teleconnections in mean sea level pressure (MSLP) are significantly modified by GS12 and LGM forcing and boundary conditions. (iv) Both the mean state and variability of the simulated GS12 is dependent on the equilibration. The annual global mean T(s) only changes by 0.10 degrees C from model years 500-599 to the last century of the simulation, indicating that the climate system may be close to equilibrium already after 500 yr of integration. However, significant regional differences between the last century of the simulation and model years 500-599 exist. Further, the difference between simulated and proxy SST is reduced from model years 500-599 to the last century of the simulation. The results of the ENSO variability analysis is also shown to depend on the equilibration.

Place, publisher, year, edition, pages
2011. Vol. 7, no 2, p. 649-670
National Category
Meteorology and Atmospheric Sciences Geosciences, Multidisciplinary
Identifiers
URN: urn:nbn:se:su:diva-68399DOI: 10.5194/cp-7-649-2011ISI: 000292247800021OAI: oai:DiVA.org:su-68399DiVA, id: diva2:472547
Note
authorCount :6Available from: 2012-01-04 Created: 2012-01-03 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Wohlfarth, Barbara

Search in DiVA

By author/editor
Wohlfarth, Barbara
By organisation
Department of Geological Sciences
In the same journal
Climate of the Past
Meteorology and Atmospheric SciencesGeosciences, Multidisciplinary

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 114 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf