Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
(14)C-Based source assessment of soot aerosols in Stockholm and the Swedish EMEP-Aspvreten regional background site
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
Show others and affiliations
2011 (English)In: Atmospheric Environment, ISSN 1352-2310, E-ISSN 1873-2844, Vol. 45, no 1, 215-222 p.Article in journal (Refereed) Published
Abstract [en]

Combustion-derived soot or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In order to propose effective mitigation strategies for BC emissions it is of importance to investigate geographical distributions and seasonal variations of BC emission sources. Here, a radiocarbon methodology is used to distinguish between fossil fuel and biomass burning sources of soot carbon (SC). SC is isolated for subsequent off-line (14)C quantification with the chemothermal oxidation method at 375 degrees C (CTO-375 method), which reflects a recalcitrant portion of the BC continuum known to minimize inadvertent inclusion of any non-pyrogenic organic matter. Monitored wind directions largely excluded impact from the Stockholm metropolitan region at the EMEP-Aspvreten rural station 70 km to the south-west. Nevertheless, the Stockholm city and the rural stations yielded similar relative source contributions with fraction biomass (f(biomass)) for fall and winter periods in the range of one-third to half. Large temporal variations in (14)C-based source apportionment was noted for both the 6 week fall and the 4 month winter observations. The f(biomass) appeared to be related to the SC concentration suggesting that periods of elevated BC levels may be caused by increased wood fuel combustion. These results for the largest metropolitan area in Scandinavia combine with other recent (14)C-based studies of combustion-derived aerosol fractions to suggest that biofuel combustion is contributing a large portion of the BC load to the northern European atmosphere.

Place, publisher, year, edition, pages
2011. Vol. 45, no 1, 215-222 p.
Keyword [en]
Radiocarbon, Black carbon, Soot, Aerosols, Source apportionment
National Category
Environmental Sciences Meteorology and Atmospheric Sciences
Identifiers
URN: urn:nbn:se:su:diva-68388DOI: 10.1016/j.atmosenv.2010.09.015ISI: 000285675600023OAI: oai:DiVA.org:su-68388DiVA: diva2:472658
Note
authorCount :5Available from: 2012-01-04 Created: 2012-01-03 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Andersson, AugustJohansson, ChristerGustafsson, Örjan
By organisation
Department of Applied Environmental Science (ITM)
In the same journal
Atmospheric Environment
Environmental SciencesMeteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf