Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Syntheses, Structure, and Luminescent Properties of Novel Hydrated Rare Earth Borates Ln(2)B(6)O(10)(OH)(4)center dot H(2)O (Ln = Pr, Nd, Sm, Eu, Gd, Dy, Ho, and Y)
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
Show others and affiliations
2011 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 50, no 5, 1767-1774 p.Article in journal (Refereed) Published
Abstract [en]

Ln(2)B(6)O(10)(OH)(4)center dot H(2)O (Ln = Pr, Nd, Sm-Gd, Dy, Ho, and Y), a new series of hydrated rare earth borates, have been synthesized under hydrothermal conditions. A single crystal of Nd analogue was used for the structure determination by X-ray diffraction. It crystallizes in the monoclinic space group C2/c with lattice constants a = 21.756(4), b = 4.3671(9), c = 12.192(2) angstrom, and beta = 108.29(3)degrees. The other compounds are isostructural to Nd(2)B(6)O(10)(OH)(4)center dot H(2)O. The fundamental building block (FBB) of the polyborate anion in this structure is a three-membered ring [B(3)O(6)(OH)(2)](5-). The FBBs are connected by sharing oxygen atoms forming an infinite [B(3)O(5)(OH)(2)](3-) chain, and the chains are linked by hydrogen bonds, establishing a two-dimensional (2-D) [B(610)(OH)(4)center dot H(2)O](6-) layer. The 2-D borate layers are thus interconnected by Ln(3+) ions to form the complex three-dimensional structure. Ln(2)B(6)O(10)(OH)(4)center dot H(2)O dehydrates stepwise, giving rise to two new intermediate compounds Ln(2)B(6)O(10)(OH)(4) and Ln(2)B(6)O(11) (OH)(2). The investigation on the luminescent properties of Gd(2-2x)Eu(2x)B(6)O(10)(OH)(4)center dot H(2)O (x = 0.01-1.00) shows a high efficiency of Eu(3+) f-f transitions and the existence of the energy transfer process from Gd(3+) to Eu(3+). Eu(2)B(6)O(10)(OH)(4)center dot H(2)O and its two dehydrated products, Eu(2)B(6)O(10)(OH)(4) and Eu(2)B(6)O(11)(OH)(2), present the strongest emission peak at 620 nm ((5)D(0) -> (7)F(2) transition), which may be potential red phosphors.

Place, publisher, year, edition, pages
2011. Vol. 50, no 5, 1767-1774 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-69460DOI: 10.1021/ic102230rISI: 000287685600021OAI: oai:DiVA.org:su-69460DiVA: diva2:477482
Note
authorCount :7Available from: 2012-01-13 Created: 2012-01-12 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sun, Junliang
By organisation
Inorganic and Structural Chemistry
In the same journal
Inorganic Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf