Change search
ReferencesLink to record
Permanent link

Direct link
An evaluation of new parsimony-based versus parametric inference methods in biogeography: a case study using the globally distributed plant family Sapindaceae
Stockholm University, Faculty of Science, Department of Botany.
Show others and affiliations
2011 (English)In: Journal of Biogeography, ISSN 0305-0270, E-ISSN 1365-2699, Vol. 38, no 3, 531-550 p.Article in journal (Refereed) Published
Abstract [en]

Aim Recently developed parametric methods in historical biogeography allow researchers to integrate temporal and palaeogeographical information into the reconstruction of biogeographical scenarios, thus overcoming a known bias of parsimony-based approaches. Here, we compare a parametric method, dispersal-extinction-cladogenesis (DEC), against a parsimony-based method, dispersal-vicariance analysis (DIVA), which does not incorporate branch lengths but accounts for phylogenetic uncertainty through a Bayesian empirical approach (Bayes-DIVA). We analyse the benefits and limitations of each method using the cosmopolitan plant family Sapindaceae as a case study. Location World-wide. Methods Phylogenetic relationships were estimated by Bayesian inference on a large dataset representing generic diversity within Sapindaceae. Lineage divergence times were estimated by penalized likelihood over a sample of trees from the posterior distribution of the phylogeny to account for dating uncertainty in biogeographical reconstructions. We compared biogeographical scenarios between Bayes-DIVA and two different DEC models: one with no geological constraints and another that employed a stratified palaeogeographical model in which dispersal rates were scaled according to area connectivity across four time slices, reflecting the changing continental configuration over the last 110 million years. Results Despite differences in the underlying biogeographical model, Bayes-DIVA and DEC inferred similar biogeographical scenarios. The main differences were: (1) in the timing of dispersal events - which in Bayes-DIVA sometimes conflicts with palaeogeographical information, and (2) in the lower frequency of terminal dispersal events inferred by DEC. Uncertainty in divergence time estimations influenced both the inference of ancestral ranges and the decisiveness with which an area can be assigned to a node. Main conclusions By considering lineage divergence times, the DEC method gives more accurate reconstructions that are in agreement with palaeogeographical evidence. In contrast, Bayes-DIVA showed the highest decisiveness in unequivocally reconstructing ancestral ranges, probably reflecting its ability to integrate phylogenetic uncertainty. Care should be taken in defining the palaeogeographical model in DEC because of the possibility of overestimating the frequency of extinction events, or of inferring ancestral ranges that are outside the extant species ranges, owing to dispersal constraints enforced by the model. The wide-spanning spatial and temporal model proposed here could prove useful for testing large-scale biogeographical patterns in plants.

Place, publisher, year, edition, pages
2011. Vol. 38, no 3, 531-550 p.
Keyword [en]
Bayesian analysis, biogeography, dispersal-extinction-cladogenesis, dispersal-vicariance analysis, divergence times, historical biogeography, palaeogeographical scenarios, parametric methods, Sapindaceae, speciation models
National Category
URN: urn:nbn:se:su:diva-69458DOI: 10.1111/j.1365-2699.2010.02432.xISI: 000288462800010OAI: diva2:477494
authorCount :6Available from: 2012-01-13 Created: 2012-01-12 Last updated: 2012-01-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Nylander, Johan A. A.
By organisation
Department of Botany
In the same journal
Journal of Biogeography

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 69 hits
ReferencesLink to record
Permanent link

Direct link