Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Entrance of the proton pathway in cbb3-type heme-copper oxidases
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
2011 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 108, no 43, 17661-6 p.Article in journal (Refereed) Published
Abstract [en]

Heme-copper oxidases (HCuOs) are the last components of the respiratory chain in mitochondria and many bacteria. They catalyze O(2) reduction and couple it to the maintenance of a proton-motive force across the membrane in which they are embedded. In the mitochondrial-like, A family of HCuOs, there are two well established proton transfer pathways leading from the cytosol to the active site, the D and the K pathways. In the C family (cbb(3)) HCuOs, recent work indicated the use of only one pathway, analogous to the K pathway. In this work, we have studied the functional importance of the suggested entry point of this pathway, the Glu-25 (Rhodobacter sphaeroides cbb(3) numbering) in the accessory subunit CcoP (E25(P)). We show that catalytic turnover is severely slowed in variants lacking the protonatable Glu-25. Furthermore, proton uptake from solution during oxidation of the fully reduced cbb(3) by O(2) is specifically and severely impaired when Glu-25 was exchanged for Ala or Gln, with rate constants 100-500 times slower than in wild type. Thus, our results support the role of E25(P) as the entry point to the proton pathway in cbb(3) and that this pathway is the main proton pathway. This is in contrast to the A-type HCuOs, where the D (and not the K) pathway is used during O(2) reduction. The cbb(3) is in addition to O(2) reduction capable of NO reduction, an activity that was largely retained in the E25(P) variants, consistent with a scenario where NO reduction in cbb(3) uses protons from the periplasmic side of the membrane.

Place, publisher, year, edition, pages
2011. Vol. 108, no 43, 17661-6 p.
Keyword [en]
glutamate, nitric oxide, oxygen reduction
National Category
Natural Sciences
Research subject
Biophysics; Biochemistry
Identifiers
URN: urn:nbn:se:su:diva-70257DOI: 10.1073/pnas.1107543108ISI: 000296378100029PubMedID: 21997215OAI: oai:DiVA.org:su-70257DiVA: diva2:480047
Note
3Available from: 2012-01-18 Created: 2012-01-18 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Lee, Hyun JuGennis, Robert BÄdelroth, Pia
By organisation
Department of Biochemistry and Biophysics
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf