Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
β₁-Adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated β₃-adrenergic receptor-knockout mice via nonshivering thermogenesis
Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
Show others and affiliations
2011 (English)In: American Journal of Physiology. Endocrinology and Metabolism, ISSN 0193-1849, E-ISSN 1522-1555, Vol. 301, no 6, E1108-E1118 p.Article in journal (Refereed) Published
Abstract [en]

With the finding that brown adipose tissue is present and negatively correlated to obesity in adult man, finding the mechanism(s) of how to activate brown adipose tissue in humans could be important in combating obesity, type 2 diabetes, and their complications. In mice, the main regulator of nonshivering thermogenesis in brown adipose tissue is norepinephrine acting predominantly via β(3)-adrenergic receptors. However, vast majorities of β(3)-adrenergic agonists have so far not been able to stimulate human β(3)-adrenergic receptors or brown adipose tissue activity, and it was postulated that human brown adipose tissue could be regulated instead by β(1)-adrenergic receptors. Therefore, we have investigated the signaling pathways, specifically pathways to nonshivering thermogenesis, in mice lacking β(3)-adrenergic receptors. Wild-type and β(3)-knockout mice were either exposed to acute cold (up to 12 h) or acclimated for 7 wk to cold, and parameters related to metabolism and brown adipose tissue function were investigated. β(3)-knockout mice were able to survive both acute and prolonged cold exposure due to activation of β(1)-adrenergic receptors. Thus, in the absence of β(3)-adrenergic receptors, β(1)-adrenergic receptors are effectively able to signal via cAMP to elicit cAMP-mediated responses and to recruit and activate brown adipose tissue. In addition, we found that in human multipotent adipose-derived stem cells differentiated into functional brown adipocytes, activation of either β(1)-adrenergic receptors or β(3)-adrenergic receptors was able to increase UCP1 mRNA and protein levels. Thus, in humans, β(1)-adrenergic receptors could play an important role in regulating nonshivering thermogenesis.

Place, publisher, year, edition, pages
2011. Vol. 301, no 6, E1108-E1118 p.
Keyword [en]
uncoupling protein 1, brown adipose tissue, obesity, type 2 diabetes, human multipotent adipose-derived stem cells
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:su:diva-70772DOI: 10.1152/ajpendo.00085.2011ISI: 000298141100008PubMedID: 21878665OAI: oai:DiVA.org:su-70772DiVA: diva2:482489
Available from: 2012-01-24 Created: 2012-01-24 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Csikasz, Robert I.Bengtsson, Tore
By organisation
Physiology
In the same journal
American Journal of Physiology. Endocrinology and Metabolism
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 205 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf