CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt184",{id:"formSmash:upper:j_idt184",widgetVar:"widget_formSmash_upper_j_idt184",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt192_j_idt200",{id:"formSmash:upper:j_idt192:j_idt200",widgetVar:"widget_formSmash_upper_j_idt192_j_idt200",target:"formSmash:upper:j_idt192:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Stochastic epidemic models in heterogeneous communitiesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2012. , p. 14
##### National Category

Probability Theory and Statistics
##### Research subject

Mathematical Statistics
##### Identifiers

URN: urn:nbn:se:su:diva-70825ISBN: 978-91-7447-436-7 (print)OAI: oai:DiVA.org:su-70825DiVA, id: diva2:482854
##### Public defence

2012-02-24, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt987",{id:"formSmash:j_idt987",widgetVar:"widget_formSmash_j_idt987",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1004",{id:"formSmash:j_idt1004",widgetVar:"widget_formSmash_j_idt1004",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1012",{id:"formSmash:j_idt1012",widgetVar:"widget_formSmash_j_idt1012",multiple:true});
##### Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Submitted.Available from: 2012-02-02 Created: 2012-01-24 Last updated: 2012-01-31Bibliographically approved
##### List of papers

The aim of Paper I is to explain where randomness should be taken into account when modelling epidemic spread, i.e. when a stochastic model is preferable to a deterministic counterpart. Two examples are used to show that the probability of a large outbreak and the initial growth rate of the epidemic are affected by randomness in infectious period and latent period. It follows that the basic reproduction number is sensitive to assumptions about the distributions of the infectious and latent periods when using data from the early stages of an outbreak, which we illustrate with data from the H1N1 influenza A pandemic. In paper II we analyse an open population stochastic epidemic S-I-S model. That is, individuals in the population move between the states of infectiousness and susceptibility, and enter of leave the population through birth and death. An approximate expression for the outbreak probability is derived using a coupling argument. It is proved that the number of infectives and susceptibles close to quasi-stationarity behaves like an Ornstein-Uhlenbeck process, for an exponentially distributed time before going extinct. In Paper III we analyse an estimator, based on martingale methods, of the Malthusian parameter, which determines the speed of epidemic spread. Asymptotic properties of the estimator are obtained, and compared to the results from simulations. The advantage of the estimator is that it may use any proportion of the information contained in the epidemic curve, in contrast to the more common simpler estimators. In paper IV a social (sexual) network is modeled by an extension of the configuration model to the situation where edges have weights. The aim is to analyse how individual heterogeneity in susceptibility and infectivity affects the basic reproduction number, but also the size and probability of a major outbreak. The main qualitative conclusion is that the basic reproduction number gets larger as the community becomes more heterogeneous.

1. Epidemic modelling: aspects where stochasticity matters$(function(){PrimeFaces.cw("OverlayPanel","overlay286658",{id:"formSmash:j_idt1073:0:j_idt1098",widgetVar:"overlay286658",target:"formSmash:j_idt1073:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. A stochastic SIS epidemic with demography: initial stages and time to extinction$(function(){PrimeFaces.cw("OverlayPanel","overlay418779",{id:"formSmash:j_idt1073:1:j_idt1098",widgetVar:"overlay418779",target:"formSmash:j_idt1073:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Estimation of the Malthusian parameter using martingale methods$(function(){PrimeFaces.cw("OverlayPanel","overlay485551",{id:"formSmash:j_idt1073:2:j_idt1098",widgetVar:"overlay485551",target:"formSmash:j_idt1073:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Inhomogeneous epidemics on weighted networks$(function(){PrimeFaces.cw("OverlayPanel","overlay485558",{id:"formSmash:j_idt1073:3:j_idt1098",widgetVar:"overlay485558",target:"formSmash:j_idt1073:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2096",{id:"formSmash:j_idt2096",widgetVar:"widget_formSmash_j_idt2096",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2149",{id:"formSmash:lower:j_idt2149",widgetVar:"widget_formSmash_lower_j_idt2149",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2150_j_idt2152",{id:"formSmash:lower:j_idt2150:j_idt2152",widgetVar:"widget_formSmash_lower_j_idt2150_j_idt2152",target:"formSmash:lower:j_idt2150:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});