Change search
ReferencesLink to record
Permanent link

Direct link
Multifunctional Core-Shell Nanoparticles: Discovery of Previously Invisible Biomarkers
Stockholm University, Faculty of Science, Department of Analytical Chemistry.
Stockholm University, Faculty of Science, Department of Analytical Chemistry.
Show others and affiliations
2011 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 133, no 47, 19178-19188 p.Article in journal (Refereed) Published
Abstract [en]

Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.

Place, publisher, year, edition, pages
2011. Vol. 133, no 47, 19178-19188 p.
National Category
Natural Sciences
URN: urn:nbn:se:su:diva-71160DOI: 10.1021/ja207515jISI: 000297662800029OAI: diva2:483879
authorCount :13Available from: 2012-01-26 Created: 2012-01-26 Last updated: 2012-01-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ilag, Leopold
By organisation
Department of Analytical Chemistry
In the same journal
Journal of the American Chemical Society
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 14 hits
ReferencesLink to record
Permanent link

Direct link