Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Heterologous prime–boost regimen adenovector 35-circumsporozoite protein vaccine/recombinant Bacillus Calmette-Guérin expressing the Plasmodium falciparum circumsporozoite induces enhanced long-term memory immunity in BALB/c mice
Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
Stockholm University, Faculty of Science, The Wenner-Gren Institute , Immunology.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:su:diva-72299OAI: oai:DiVA.org:su-72299DiVA: diva2:491735
Available from: 2012-02-07 Created: 2012-02-07 Last updated: 2012-02-07Bibliographically approved
In thesis
1. Novel immunization strategies and interethnic differences in response to malaria infection
Open this publication in new window or tab >>Novel immunization strategies and interethnic differences in response to malaria infection
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A better understanding of the role of antigen-presenting cells (APCs) in host resistance to malaria is essential to unravel the complex interactions between the host and the parasite. This would improve the design of malaria vaccines.

Mycobacterium bovis Bacillus Calmette-Guérin (BCG) has been utilized as a vector to deliver vaccine candidate antigens. We assessed the immunogenicity of a recombinant BCG-expressing (BCG-CS) circumsporozoite protein (CSp) as a malaria vaccine candidate. Immunization of BALB/c mice with BCG-CS augmented the numbers of dendritic cells (DCs) in draining lymph nodes and in the spleen. The activation markers MHC-class-II, CD40, CD80, and CD86 on DCs were significantly upregulated by BCG-CS as compared to wild-type BCG (wt-BCG). In vitro stimulation of bone marrow-derived DCs and macrophages with BCG-CS induced IL-12 and TNF-α production. BCG-CS induced higher phagocytic activity in macrophages as compared to wt-BCG. Finally, BCG-CS induced CSp-specific antibodies and IFN-γ-producing memory cells. Taken together, we found that BCG-CS is highly efficient in activating innate immune responses and could effectively prime the adaptive immune system.

Heterologous prime–boost approaches using vectors are optimal strategies to improve a broad and prolonged immunogenicity of malaria vaccines. We have demonstrated in BALB/c mice that priming with a replication-defective human adenovirus serotype 35 (Ad35) vector encoding CSp (Ad35-CS), followed by boosting with BCG-CS, maintained antibody responses and significantly increased levels of long-lived plasma cells (LLPC) and IFN-g-producing cells in response to CSp peptides. The increased number of IFN-g-producing cells induced by the combination of Ad35-CS/BCG-CS and the sustained type 1 antibody profile, together with high levels of LLPCs, may be essential for the development of long-term protective immunity against liver-stage parasites.

Fulani and Dogon, two sympatric ethnic groups living in northeastern Mali, are characterized by a marked difference in the susceptibility to P. falciparum malaria. We investigated whether APCs obtained from Fulani and Dogon children exhibited differences in terms of activation status and toll-like receptor (TLR) responses during malaria infection. We observed decreased activation of APCs and markedly suppressed TLR responses in Dogon children as compared to Fulani. These findings suggest that APCs and TLR signaling may be of importance for the protective immunity against malaria observed in the Fulani.

In conclusion, this thesis provides new insights that could facilitate a rational design of novel vaccines against malaria. Furthermore, the results elicit some immunological bases of the APC activation underlying the differences in host susceptibility to malaria infections.

Place, publisher, year, edition, pages
Stockholm: The Wenner-Gren Institute, Stockholm University, 2012. 93 p.
Keyword
Malaria, Immunization, Ethnic groups, vaccines
National Category
Immunology
Research subject
Immunology
Identifiers
urn:nbn:se:su:diva-72288 (URN)978-91-7447-450-3 (ISBN)
Public defence
2012-03-15, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: In Press. Paper 2: Manuscript.Available from: 2012-02-22 Created: 2012-02-06 Last updated: 2012-02-08Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Arama, CharlesFernández, C.Troye-Blomberg, Marita
By organisation
Immunology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf