Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preparation of Transparent Nanoceramics by Suppressing Pore Coalescence
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Materials Chemistry.
Show others and affiliations
2011 (English)In: Journal of The American Ceramic Society, ISSN 0002-7820, E-ISSN 1551-2916, Vol. 94, no 12, p. 4269-4273Article in journal (Refereed) Published
Abstract [en]

Microstructural developments in nanoceramics were investigated in 3Y-TZP compacts with relative density (RD) exceeding 93%. Special attentions were paid to the evolutions of pore structures. It was found that the densification process of nanoceramic compacts with apparently close porosity was greatly jeopardized by pore coalescence. This observation was interpreted by the coalescence of locally interconnected pores originated from inhomogeneous packing of particles. The pore coalescence can be suppressed by application of an external pressure. The processing principle was demonstrated by spark plasma sintering (SPS) with extended holding at a minimized sintering temperature. The highly dense 3Y-TZP nanoceramics containing no large pores became optically transparent.

Place, publisher, year, edition, pages
2011. Vol. 94, no 12, p. 4269-4273
National Category
Environmental Sciences Materials Chemistry Inorganic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-74053DOI: 10.1111/j.1551-2916.2011.04829.xISI: 000297848100032OAI: oai:DiVA.org:su-74053DiVA, id: diva2:506628
Note
authorCount :5Available from: 2012-02-29 Created: 2012-02-28 Last updated: 2022-02-24Bibliographically approved
In thesis
1. Grain growth by Ordered Coalescence of crystallites in Ceramics: Grain Growth Mechanisms, Microstructure Evolution and Sintering
Open this publication in new window or tab >>Grain growth by Ordered Coalescence of crystallites in Ceramics: Grain Growth Mechanisms, Microstructure Evolution and Sintering
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Grain growth and densification process play the two most crucial roles on the microstructure evolution and the achieved performances during sintering of ceramics. In this thesis, the grain growth of SrTiO3, BaTiO3-SrTiO3 solid solutions and Si3N4 ceramics during spark plasma sintering (SPS) were investigated by electron microscopy.

SrTiO3 ceramics starting from nanopowders were fabricated by SPS. A novel grain growth mechanism was discovered and named as ordered coalescence (OC) of nanocrystals. This mechanism involved nanocrystals as building blocks and is distinguished from atomic layer epitaxial growth (AEG) in classical sintering theory. The results also revealed that the dominant grain growth mechanism can be changed by varying heating rates. Low rate (10°C/min) gives AEG, whereas high rates (≥ 50°C/min) yields three-dimensional coalescence of nanocrystals, i.e. OC.

BaTiO3-SrTiO3 sintered bodies were made by SPS of BaTiO3 and SrTiO3 nanopowders mixtures. A novel Sr1-xBaxTiO3 “solid solution” with mosaic-like single crystal structure was manufactured by OC of the precursor crystallites. This reveals a new path for preparation of solid solution grains or composites.  

Si3N4 ceramics were prepared from α- or β-Si3N4 nanopowders at the same SPS conditions. The anisotropic OC of precipitated β-Si3N4 crystallites gives elongated β-Si3N4 grains at 1650°C using α-Si3N4 nanopowder. In contrast, AEG leads to the equi-axed β-Si3N4 grains using β-Si3N4 nanopowder. The metastable α- to β-Si3N4 phase transformation and OC accelerates anisotropic grain growth.

Grain motions contribute to the densification process during pressureless sintered 3Y-ZrO2 (>87%TD) or SPS of SrTiO3 (>92%TD) ceramics. This extends the sintering range for active grain re-arrangement over that predicted by classical theory.

In this thesis a new grain growth mechanism (OC) is proved by using SPS and nanopowders. By OC the microstructural evolution can be manipulated.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2013. p. 80
National Category
Materials Chemistry Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
urn:nbn:se:su:diva-88628 (URN)978-91-7447-677-4 (ISBN)
Public defence
2013-06-13, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Accepted. Paper 3: Submitted. Paper 4: Manuscript. Paper 7: Accepted.

Available from: 2013-05-16 Created: 2013-03-22 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Hu, JianfengShen, Zhijian

Search in DiVA

By author/editor
Hu, JianfengShen, Zhijian
By organisation
Department of Materials and Environmental Chemistry (MMK)Inorganic and Structural ChemistryMaterials Chemistry
In the same journal
Journal of The American Ceramic Society
Environmental SciencesMaterials ChemistryInorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 255 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf