Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2012 (English)In: Nature Chemistry, ISSN 1755-4330, E-ISSN 1755-4349, Vol. 4, 188-194 p.Article in journal (Refereed) Published
Abstract [en]

Porous materials such as zeolites contain well-defined pores in molecular dimensions and have important industrial applications in catalysis, sorption and separation. Aluminosilicates with intersecting 10- and 12-ring channels are particularly interesting as selective catalysts. Many porous materials, especially zeolites, form only nanosized powders and some are intergrowths of different structures, making structure determination very challenging. Here, we report the atomic structures of an aluminosilicate zeolite family, ITQ-39, solved from nanocrystals only a few unit cells in size by electron crystallography. ITQ-39 is an intergrowth of three different polymorphs, built from the same layer but with different stacking sequences. ITQ-39 contains stacking faults and twinning with nano-sized domains, being the most complex zeolite ever solved. The unique structure of ITQ-39, with a three-dimensional intersecting pairwise 12-ring and 10-ring pore system, makes it a promising catalyst for converting naphtha into diesel fuel, a process of emerging interest for the petrochemical industry.

Place, publisher, year, edition, pages
2012. Vol. 4, 188-194 p.
Keyword [en]
Catalysis, Materials chemistry
National Category
Natural Sciences Inorganic Chemistry
Research subject
Structural Chemistry
Identifiers
URN: urn:nbn:se:su:diva-74963DOI: 10.1038/nchem.1253ISI: 000300628900014OAI: oai:DiVA.org:su-74963DiVA: diva2:513263
Available from: 2012-04-01 Created: 2012-04-01 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Structural study of zeolites utilizing novel electron crystallographic methods: A voyage into the world of zeolite structures
Open this publication in new window or tab >>Structural study of zeolites utilizing novel electron crystallographic methods: A voyage into the world of zeolite structures
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Electron crystallography has evolved as a powerful method for structural characterization of a wide range of materials. It has two significant advantages over other methods for structure determination, e.g. X-ray diffraction. Electrons interact much more strongly with matter compared to X-rays and they can be focused by electromagnetic lenses to form images with atomic resolution. These advantages make electron crystallography a unique tool for characterization of crystalline materials suffering from small crystal size and complex or disordered structures.

     Zeolites are a class of microporous materials with significance in several applications. They often possess complex and disordered structures, which demand large efforts in the structure determination.

     Over the last years, two new electron crystallographic methods have been developed; the rotation electron diffraction (RED) and the structure projection reconstruction from a through-focus series of high resolution transmission electron microscopy (HRTEM) images. In this thesis, they will be applied for structure determination of four new zeolite structures, including EMM-25 and EMM-23 with two ordered structures, and ITQ-39 and ITQ-38 with disordered structures. Each of the structure solutions have different challenges to overcome. The high silica borosilicate EMM-25 was solved by the RED method. The aluminosilicate EMM-23 was solved by a combination of HRTEM and RED. The structure solution of two materials with disordered structures, ITQ-39 and ITQ-38, will be described. For materials containing disorders, structure projection images are of utmost importance.

     Furthermore, the mesoporosity inside hierarchically porous ZSM-5 crystals was studied by a combination of focused ion beam (FIB) and HRTEM imaging. The last part of this thesis explores STEM imaging for use in structure determination from 3D reconstruction.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2013. 104 p.
Keyword
Electron crystallography, zeolites, structure determination, disorder, electron microscopy
National Category
Inorganic Chemistry
Research subject
Structural Chemistry
Identifiers
urn:nbn:se:su:diva-95870 (URN)978-91-7447-810-5 (ISBN)
Public defence
2013-12-16, Nordenskiöldsalen, Geovetenskapens hus, Svante Arrhenius väg 12, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defence the following papers were unpublished and had a status as follows: Papers 4 and 5: Manuscipts; Paper 10: Manuscript

Available from: 2013-11-24 Created: 2013-11-05 Last updated: 2013-11-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.nature.com/nchem/journal/v4/n3/full/nchem.1253.html

Search in DiVA

By author/editor
Willhammar, TomSun, JunliangWan, WeiOleynikov, PeterZou, Xiaodong
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Nature Chemistry
Natural SciencesInorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf