Change search
ReferencesLink to record
Permanent link

Direct link
Stockholm University, Faculty of Science, Department of Mathematics.
2012 (English)In: Journal of Applied Probability, ISSN 0021-9002, E-ISSN 1475-6072, Vol. 49, no 1, 184-198 p.Article in journal (Refereed) Published
Abstract [en]

We consider the problem of finding an optimal betting strategy for a house-banked casino card game that is played for several coups before reshuffling. The sampling without replacement makes it possible to take advantage of the changes in the expected value as the deck is depleted, making large bets when the game is advantageous. Using such a strategy, which is easy to implement, is known as card counting. We consider the case of a large number of decks, making an approximation to continuous time possible. A limit law of the return process is found and the optimal card counting strategy is derived. This continuous-time strategy is shown to be a natural analog of the discrete-time strategy where the so-called effects of removal are replaced by the infinitesimal generator of the card process.

Place, publisher, year, edition, pages
2012. Vol. 49, no 1, 184-198 p.
Keyword [en]
Sampling without replacement, invariance principle, gambling theory, optimal control
National Category
URN: urn:nbn:se:su:diva-76247DOI: 10.1239/jap/1331216841ISI: 000302038100011OAI: diva2:528710
1Available from: 2012-05-28 Created: 2012-05-10 Last updated: 2012-05-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Andersson, Patrik
By organisation
Department of Mathematics
In the same journal
Journal of Applied Probability

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 220 hits
ReferencesLink to record
Permanent link

Direct link