Change search
ReferencesLink to record
Permanent link

Direct link
The relationship between temporal variation of hypoxia, polarographic measurements and predictions of tumour response to radiation
Umeå University.ORCID iD: 0000-0002-7101-240X
Umeå University.ORCID iD: 0000-0001-8171-2541
Umeå University.
2004 (English)In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 49, no 19, 4463-4475 p.Article in journal (Refereed) Published
Abstract [en]

The polarographic oxygen sensor is one of the most used devices for in vivo measurements of oxygen and many other measurement techniques for measuring tumour hypoxia are correlated with electrode measurements. Little is known however about the relationship between electrode measurements and the real tissue oxygenation. This paper investigates the influence of the temporal change of the hypoxic pattern on the electrode measurements and the tumour response. Electrode measurements and tumour response were simulated using a computer program that allows both the calculation of the tissue oxygenation with respect to the two types of hypoxia that might arise in tumours and the virtual insertion of the electrode into the tissue. It was therefore possible to control the amount of each type of hypoxia in order to investigate their influence on the measurement results. Tissues with several vascular architectures ranging from well oxygenated to poorly oxygenated were taken into consideration as might be seen in practice. The influence of the electrode measurements on the treatment outcome was estimated by calculating the tumour control probability for the tumours characterized either by the real or by the measured tumour oxygenation. We have simulated electrode oxygen measurements in different types of tissues, covering a wide range of tumour oxygenations. The results of the simulations showed that the measured distribution depends on the details of the vascular network and not on the type of hypoxia. We have also simulated the effects of the temporal change of the acute hypoxic pattern due to the opening and the closure of different blood vessels during a full fractionated treatment. The results of this simulation suggested that the temporal variation of the hypoxic pattern does not lead to significantly different results for the electrode measurements or the predicted tumour control probabilities. In conclusion, it was found that the averaging effect of the electrode leads to a systematic deviation between the actual oxygen distribution and the measured distribution. However, as the electrode reflects the general trends of the tissue oxygenation it has the potential of being used for the general characterization of tumour hypoxia even if the actual type of hypoxia measured by the electrode cannot be determined. Indeed, the change in time of the acute hypoxic region does not compensate for the lack of oxygenation at a specific moment and therefore does not influence the polarographic oxygen measurements.

Place, publisher, year, edition, pages
2004. Vol. 49, no 19, 4463-4475 p.
National Category
Cancer and Oncology
Research subject
Medical Radiation Physics; Radiation Physics; Oncology
URN: urn:nbn:se:su:diva-79195DOI: 10.1088/0031-9155/49/19/002OAI: diva2:547953
Available from: 2012-08-29 Created: 2012-08-29 Last updated: 2014-09-23

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Toma-Dasu, IulianaDasu, Alexandru
In the same journal
Physics in Medicine and Biology
Cancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 17 hits
ReferencesLink to record
Permanent link

Direct link