Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Family of Flexible Lanthanide Bipyridinedicarboxylate Metal-Organic Frameworks Showing Reversible Single-Crystal to Single-Crystal Transformations
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2012 (English)In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 12, no 6, 3243-3249 p.Article in journal (Refereed) Published
Abstract [en]

A family of flexible lanthanide metal-organic frameworks, [Ln(2)(bpydc)(3)(H2O)(3)]center dot nDMF (denoted as SUMOF-6-Ln; Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er, H(2)bpydc =2,2'-bipyridine-5,5'-dicarboxylic acid), was synthesized and characterized. SUMOF-6-Ln has a monoclinic space group P2(1)/c. The three-dimensional framework contains chains of LnO(n) (n = 7-8) polyhedra connected through the bpydc linkers forming 1D rhombic channels along the c-axis. SUMOF-6-Ln showed reversible breathing phenomenon upon desorption/adsorption of the solvent, with up to 27% changes of the unit cell dimensions and 23% changes of the unit cell volume. Single crystal X-ray diffraction (XRD) revealed that the desolvation and resolvation of SUMOF-6-Ln occurred via single-crystal to single-crystal transformations. The thermal behavior of SUMOF-6-Sm was also examined. SUMOF-6-Eu and SUMOF-6-Tb showed solid-state luminescent properties.

Place, publisher, year, edition, pages
2012. Vol. 12, no 6, 3243-3249 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:su:diva-79892DOI: 10.1021/cg300379uISI: 000304838000066OAI: oai:DiVA.org:su-79892DiVA: diva2:551804
Note

AuthorCount:5;

Available from: 2012-09-12 Created: 2012-09-11 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Metal-Organic Frameworks (MOFs) for Heterogeneous Catalysis: Synthesis and Characterization
Open this publication in new window or tab >>Metal-Organic Frameworks (MOFs) for Heterogeneous Catalysis: Synthesis and Characterization
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Metal-organic frameworks (MOFs) are crystalline hybrid materials with interesting chemical and physical properties. This thesis is focused on the synthesis and characterization of different MOFs and their use in heterogeneous catalysis.

Zeolitic imidazolate frameworks (ZIFs), including ZIF-4, ZIF -7 and ZIF -62, Ln(btc)(H2O) (Ln: Nd, Sm, Eu, Gd, Tb, Ho, Er and Yb), Ln2(bpydc)3(H2O)3, (Ln: Sm, Gd, Nd, Eu, Tb, Ho and Er), MOF-253-Ru and Zn(Co-salophen) MOFs were synthesized. Various characterization techniques were applied to study the properties of these MOFs. X-ray powder diffraction (XRPD), single crystal X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were extensively used.

The effect of synthesis parameters, such as batch composition and temperature, on the formation and morphology of ZIF-7 and ZIF-62 was studied. Structural transformation and flexibility of two series of lanthanide-based MOFs, Ln(btc)(H2O) (Ln: Nd, Ho and Er) and Ln2(bpydc)3(H2O)3, (Ln: Sm and Gd) upon drying and heating were characterized. Relations between metal coordination, structure flexibility and thermal stability among the Sm2(bpydc)3(H2O)3, Nd(btc)(H2O) and MOF-253 were investigated.

Salophen- and phenanthroline-based organic linkers were designed, synthesized and characterized. Metal complexes were coordinated to these linkers to be used as catalytic sites within the MOFs.

Catalytic studies using two MOF materials, Ln(btc) and MOF-253-Ru, as heterogeneous catalysts in organic transformation reactions were performed. The heterogeneous nature and recyclability of these MOFs were investigated and described.

Place, publisher, year, edition, pages
Department of Materials and Environmental Chemistry (MMK), Stockholms University, 2012. 119 p.
Keyword
metal-organic frameworks, zeolitic imidazolate frameworks, functionalized linkers, structural transformation, heterogeneous catalysis
National Category
Chemical Sciences
Research subject
Structural Chemistry
Identifiers
urn:nbn:se:su:diva-74431 (URN)978-91-7447-451-0 (ISBN)
Public defence
2012-04-13, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of doctoral defence the following papers were unpublished and had a status as follows: Paper nr 4: Submitted; Paper nr 5: Submitted

Available from: 2012-03-22 Created: 2012-03-12 Last updated: 2013-08-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gustafsson, MikaelaSu, JieYao, QingxiaZou, Xiaodong
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Crystal Growth & Design
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 98 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf