Change search
ReferencesLink to record
Permanent link

Direct link
Interpenetrated metal-organic frameworks and their uptake of CO2 at relatively low pressures
Show others and affiliations
2012 (English)In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 20, 10345-10351 p.Article in journal (Refereed) Published
Abstract [en]

Adsorption-driven separation of CO2 from flue gas has the potential to cut the cost for carbon capture and storage. Among the porous physisorbents, metal-organic frameworks (MOFs) are a class of promising candidates for gas separation and storage owing to their extraordinarily high specific surface areas and pore volumes, and predesigned pore structures. Here, we report three interpenetrated MOFs composed of Zn4O clusters and rigid dicarboxylate anions, namely SUMOF-n (SU StockholmUniversity; n = 2, 3, 4). All the interpenetrated MOFs possess small pores of two different types and high pore volumes. SUMOF-2 had a structure similar to interpenetrated MOF-5, but with an extra-framework cation present in one of the two types of pores. SUMOF-3 was an interpenetrated version of IRMOF-8 while SUMOF-4 crystallized with mixed linkers, biphenyl-4,4'-dicarboxylic acid and benzene-1,4-dicarboxylic acid. Among the three SUMOFs, SUMOF-4 had the largest specific surface area (1612 m(2) g(-1)) and pore volume. Single component adsorption of CO2 and N-2 was determined at 273 K. We showed that the interpenetrated SUMOF-2 adsorbedmore CO2 than non-interpenetrated MOF-5 under 273 K and 1 bar. This may be explained by the increased electric field gradients due to the interpenetration in the MOF. The uptake of CO2 for SUMOF-2 and SUMOF-4 was significant at somewhat higher pressure. Their CO2 isotherms were close to linear, which could be beneficial for separation of CO2 via pressure swing adsorption from biogas or natural gas. On the other hand, SUMOF-3 adsorbed most CO2 at pressures relevant for CO2 capture from flue gas.

Place, publisher, year, edition, pages
2012. Vol. 22, no 20, 10345-10351 p.
National Category
Chemical Sciences
URN: urn:nbn:se:su:diva-79717DOI: 10.1039/c2jm15933cISI: 000303442300032OAI: diva2:552053


Available from: 2012-09-12 Created: 2012-09-11 Last updated: 2012-09-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hedin, NiklasZou, Xiaodong
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Journal of Materials Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 34 hits
ReferencesLink to record
Permanent link

Direct link