Change search
ReferencesLink to record
Permanent link

Direct link
Interaction with Caveolin-1 Modulates G Protein Coupling of Mouse beta(3)-Adrenoceptor
Stockholm University, Faculty of Science, The Wenner-Gren Institute , Physiology.
Show others and affiliations
2012 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 287, no 24, 20674-20688 p.Article in journal (Refereed) Published
Abstract [en]

Caveolins act as scaffold proteins in multiprotein complexes and have been implicated in signaling by G protein-coupled receptors. Studies using knock-out mice suggest that beta(3)-adrenoceptor (beta(3)-AR) signaling is dependent on caveolin-1; however, it is not known whether caveolin-1 is associated with the beta(3)-AR or solely with downstream signaling proteins. We have addressed this question by examining the impact of membrane rafts and caveolin-1 on the differential signaling of mouse beta(3a)- and beta(3b)-AR isoforms that diverge at the distal C terminus. Only the beta(3b)-AR promotes pertussis toxin (PTX)-sensitive cAMP accumulation. When cells expressing the beta(3a)-AR were treated with filipin III to disrupt membrane rafts or transfected with caveolin-1 siRNA, the cyclic AMP response to the beta(3)-AR agonist CL316243 became PTX-sensitive, suggesting G alpha(i/o) coupling. The beta(3a)-AR C terminus, S (P-384) under bar PLNR (P-389) under bar DG (Y-392) under bar EGARP (P-398) under bar PT, resembles a caveolin interaction motif. Mutant beta(3a)-ARs (F389A/Y392A/F398A or P384S/F389A) promoted PTX-sensitive cAMP responses, and in situ proximity assays demonstrated an association between caveolin-1 and the wild type beta(3a)-AR but not the mutant receptors. In membrane preparations, the beta(3b)-AR activated G alpha(o) and mediated PTX-sensitive cAMP responses, whereas the beta(3a)-AR did not activate G alpha(i/o) proteins. The endogenous beta(3a)-AR displayed G alpha(i/o) coupling in brown adipocytes from caveolin-1 knock-out mice or in wild type adipocytes treated with filipin III. Our studies indicate that interaction of the beta(3a)-AR with caveolin inhibits coupling to G alpha(i/o) proteins and suggest that signaling is modulated by a raft-enriched complex containing the beta(3a)-AR, caveolin-1, G alpha(s), and adenylyl cyclase.

Place, publisher, year, edition, pages
2012. Vol. 287, no 24, 20674-20688 p.
National Category
Biochemistry and Molecular Biology
URN: urn:nbn:se:su:diva-80000DOI: 10.1074/jbc.M111.280651ISI: 000306414500086OAI: diva2:555303


Available from: 2012-09-19 Created: 2012-09-12 Last updated: 2012-09-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Sato, Masaaki
By organisation
In the same journal
Journal of Biological Chemistry
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 189 hits
ReferencesLink to record
Permanent link

Direct link