Change search
ReferencesLink to record
Permanent link

Direct link
Efficient Intracellular Delivery of Nucleic Acid Pharmaceuticals Using Cell-Penetrating Peptides
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2012 (English)In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 45, no 7, 1132-1139 p.Article, review/survey (Refereed) Published
Abstract [en]

Over the last 20 years, researchers have designed or discovered peptides that can permeate membranes and deliver exogenous molecules inside a cell. These peptides, known as cell-penetrating peptides (CPPs), typically consist of 6-30 residues, including HIV TAT peptide, penetratin, oligoarginine, transportan, and TP10. Through chemical conjugation or noncovalent complex formation, these structures successfully deliver bioactive and membrane-impermeable molecules into cells. CPPs have also gained attention as an attractive vehicle for the delivery of nucleic add pharmaceuticals (NAPs), including genes/plasmids, short oligonucleotides, and small interference RNAs and their analogues, due to their high internalization efficacy, low cytotoxicity, and flexible structural design. In this Account, we survey the potential of CPPs for the design and optimization of NAP delivery systems. First, we describe the impact of the N-terminal stearylation of CPPs. Endocytic pathways make a major contribution to the cellular uptake of NAPS. Stearylation at the N-terminus of CPPs with stearyl-octaarginine (R8), stearyl-(RxR)(4), and stearyl-TP10 prompts the formation of a self-assembled core shell nanoparticle with NAPS, a compact structure that promotes cellular uptake. Researchers have designed modifications such as the addition of trifluoromethylquinoline moieties to lysine residues to destabilize endosomes, as exemplified by PepFect 6, and these changes further improve biological responsiveness. Alternatively, stearylation also allows implantation of CPPs onto the surface of liposomes. This feature facilitates programmed packaging to establish multifunctional envelope-type nanodevices (MEND). The R8-MEND showed high transfection efficiency comparable to that of adenovirus in non-dividing cells. Understanding the cellular uptake mechanisms of CPPs will further improve CPP-mediated NAP delivery. The cellular uptake of CPPs and their NAP complex involves various types of endocytosis. Macropinocytosis, a mechanism which is also activated in response to stimuli such as growth factors or viruses, is a primary pathway for arginine-rich CPPs because high cationic charge density promotes this endocytic pathway. The use of larger endosomes (known as macropinosomes) rather than clathrin- or caveolae-mediated endocytosis has been reported in macropinocytosis which would also facilitate the endocytosis of NAP nanoparticles into cells.

Place, publisher, year, edition, pages
2012. Vol. 45, no 7, 1132-1139 p.
National Category
Chemical Sciences
URN: urn:nbn:se:su:diva-80282DOI: 10.1021/ar200256eISI: 000306441900019OAI: diva2:556452


Available from: 2012-09-25 Created: 2012-09-17 Last updated: 2015-04-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gräslund, AstridLangel, Ülo
By organisation
Department of Biochemistry and BiophysicsDepartment of Neurochemistry
In the same journal
Accounts of Chemical Research
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 15 hits
ReferencesLink to record
Permanent link

Direct link