Change search
ReferencesLink to record
Permanent link

Direct link
A comparison of total reaction cross section models used in FLUKA, GEANT4 and PHITS
Stockholm University, Faculty of Science, Department of Physics.
Show others and affiliations
2012 (English)In: Aerospace Conference, 2012 IEEE, 2012, 1-10 p.Conference paper, Presentation (Refereed)
Abstract [en]

Understanding the interactions and propagations of high energy protons and heavy ions are essential when trying to estimate the biological effects of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) on personnel on interplanetary missions, and when preparing the construction of a lunar base. To be able to calculate the secondary particles, including neutrons, and to estimate shielding properties of different materials and radiation risks inside complex geometries, particle and heavy ion transport codes are needed. The interactions of the GCR and SPE with matter include many complex properties and many factors influence the calculated results. In all particle and heavy ion transport codes, the probability function that a projectile particle will collide with a nucleus within a certain distance x in the matter depends on the total reaction cross sections, which also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. FLUKA, GEANT4 and PHITS are three major multi-purpose three-dimensional Monte Carlo particle and heavy ion transport codes widely used for fundamental research, radioprotection, radiotherapy, and space dosimetry. In this paper, a systematic comparison of the total reaction cross section models used as default in these three codes is performed for a variety of systems of importance for space dosimetry, and the need for future improvements and benchmarking against experimental results is discussed. The need for benchmarking and improvements of the partial nuclear reaction and evaporation models, as well as how impact parameter functions, switching time between the dynamical/pre-equilibrium and the de-excitation/evaporation stages, low energy data libraries, etc., influence the final results, is also briefly be discussed.

Place, publisher, year, edition, pages
2012. 1-10 p.
Keyword [en]
FLUKA;GEANT4;PHITS;biological effect;fundamental research;galactic cosmic ray;heavy ion transport code;heavy ions;high energy protons;interplanetary missions;lunar base;multipurpose 3D Monte Carlo code;partial fragmentation cross section;personnel;radiation risk;radioprotection;radiotherapy;solar particle events;space dosimetry;total reaction cross section model;Moon;aerospace biophysics;biological effects of ionising particles;cosmic rays;dosimetry;
National Category
Physical Sciences
URN: urn:nbn:se:su:diva-81156DOI: 10.1109/AERO.2012.6187014OAI: diva2:560047
Aerospace Conference, 2012 IEEE
Available from: 2012-10-11 Created: 2012-10-11 Last updated: 2012-10-12Bibliographically approved
In thesis
1. Monte Carlo particle transport codes for ion beam therapy treatment planning: Validation, development and applications
Open this publication in new window or tab >>Monte Carlo particle transport codes for ion beam therapy treatment planning: Validation, development and applications
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

External radiotherapy with proton and ion beams needs accurate tools for the dosimetric characterization of treatment fields. Monte Carlo (MC) particle transport codes, such as FLUKA and GEANT4, can be a valuable method to increase accuracy of dose calculations and to support various aspects of ion beam therapy (IBT), such as treatment planning and monitoring. One of the prerequisites for such applications is however that the MC codes are able to model reliably and accurately the relevant physics processes. As a first focus of this thesis work, physics models of MC codes with importance for IBT are developed and validated with experimental data. As a result suitable models and code configurations for applications in IBT are established. The accuracy of FLUKA and GEANT4 in describing nuclear fragmentation processes and the production of secondary charged nuclear fragments is investigated for carbon ion therapy. As a complementary approach to evaluate the capability of FLUKA to describe the characteristics of mixed radiation fields created by ion beams, simulated microdosimetric quantities are compared with experimental data. The correct description of microdosimetric quantities is also important when they are used to predict values of relative biological effectiveness (RBE). Furthermore, two models describing Compton scattering and the acollinearity of two-quanta positron annihilation at rest in media were developed, validated and integrated in FLUKA. The detailed description of these processes is important for an accurate simulation of positron emission tomography (PET) and prompt-γ imaging. Both techniques are candidates to be used in clinical routine to monitor dose administration during cancer treatments with IBT. The second objective of this thesis is to contribute to the development of a MC-based treatment planning tool for protons and ions with atomic number Z ≤ 8 using FLUKA. In contrast to previous clinical FLUKA-based MC implementations for IBT which only re-calculate a given treatment plan, the developed prototype features inverse optimization of absorbed dose and RBE-weighted dose for single fields and simultaneous multiple-field optimization for realistic treatment conditions. In a study using this newly-developed tool, the robustness of IBT treatment fields to uncertainties in the prediction of RBE values is investigated, while comparing different optimization strategies.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2012. 86 p.
Monte Carlo, ion beam therapy, treatment planning, cancer therapy, microdosimetry
National Category
Physical Sciences
Research subject
Medical Radiation Physics
urn:nbn:se:su:diva-81111 (URN)978-91-7447-551-7 (ISBN)
Public defence
2012-11-29, föreläsningssalen, Radiumhemmet, Karolinska universitetssjukhuset, Solna, 09:00 (English)
EU, FP7, Seventh Framework Programme, PITN-GA-2008-215840-PARTNEREU, FP7, Seventh Framework Programme, ENVISION FP7 Grant Agreement N. 241851

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Submitted. Paper 6: Manuscript.

Available from: 2012-11-07 Created: 2012-10-10 Last updated: 2013-04-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Böhlen, Till Tobias
By organisation
Department of Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 36 hits
ReferencesLink to record
Permanent link

Direct link