Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigating the robustness of ion beam therapy treatment plans to uncertainties in biological treatment parameters
Stockholm University, Faculty of Science, Department of Physics. CERN, Geneva, Switzerland; Karolinska Institutet, Sweden.
Show others and affiliations
2012 (English)In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 57, no 23, p. 7983-8004Article in journal (Refereed) Published
Abstract [en]

Uncertainties in determining clinically-used relative biological effectiveness (RBE) values for ion beam therapy carry the risk of absolute and relative misestimations of RBE-weighted doses for clinical scenarios. The present study assesses the consequences of hypothetical misestimations of input parameters to the RBE modelling for carbon ion treatment plans by a variational approach. The impact of the variations on resulting cell survival and RBE values is evaluated as a function of the remaining ion range. In addition, the sensitivity to misestimations in RBE modelling is compared for single fields and two opposed fields using differing optimization criteria. It is demonstrated for single treatment fields that moderate variations (up to ±50%) of representative nominal input parameters for four tumours result mainly in a misestimation of the RBE-weighted dose in the planning target volume (PTV) by a constant factor and only smaller RBE-weighted dose gradients. Ensuring a more uniform radiation quality in the PTV eases the clinical importance of uncertainties in the radiobiological treatment parameters as for such a condition uncertainties tend to result only in a systematic misestimation of RBE-weighted dose in the PTV by a constant factor. Two opposed carbon ion fields with a constant RBE in the PTV are found to result in rather robust conditions. Treatments using two ion species may be used to achieve a constant RBE in the PTV irrespective of the size and depth of the spread-out Bragg peak.

Place, publisher, year, edition, pages
2012. Vol. 57, no 23, p. 7983-8004
National Category
Physical Sciences
Research subject
Medical Radiation Physics
Identifiers
URN: urn:nbn:se:su:diva-81164DOI: 10.1088/0031-9155/57/23/7983ISI: 000311351400022PubMedID: 23154750Scopus ID: 2-s2.0-84870342065OAI: oai:DiVA.org:su-81164DiVA, id: diva2:560056
Available from: 2012-10-11 Created: 2012-10-11 Last updated: 2022-10-03Bibliographically approved
In thesis
1. Monte Carlo particle transport codes for ion beam therapy treatment planning: Validation, development and applications
Open this publication in new window or tab >>Monte Carlo particle transport codes for ion beam therapy treatment planning: Validation, development and applications
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

External radiotherapy with proton and ion beams needs accurate tools for the dosimetric characterization of treatment fields. Monte Carlo (MC) particle transport codes, such as FLUKA and GEANT4, can be a valuable method to increase accuracy of dose calculations and to support various aspects of ion beam therapy (IBT), such as treatment planning and monitoring. One of the prerequisites for such applications is however that the MC codes are able to model reliably and accurately the relevant physics processes. As a first focus of this thesis work, physics models of MC codes with importance for IBT are developed and validated with experimental data. As a result suitable models and code configurations for applications in IBT are established. The accuracy of FLUKA and GEANT4 in describing nuclear fragmentation processes and the production of secondary charged nuclear fragments is investigated for carbon ion therapy. As a complementary approach to evaluate the capability of FLUKA to describe the characteristics of mixed radiation fields created by ion beams, simulated microdosimetric quantities are compared with experimental data. The correct description of microdosimetric quantities is also important when they are used to predict values of relative biological effectiveness (RBE). Furthermore, two models describing Compton scattering and the acollinearity of two-quanta positron annihilation at rest in media were developed, validated and integrated in FLUKA. The detailed description of these processes is important for an accurate simulation of positron emission tomography (PET) and prompt-γ imaging. Both techniques are candidates to be used in clinical routine to monitor dose administration during cancer treatments with IBT. The second objective of this thesis is to contribute to the development of a MC-based treatment planning tool for protons and ions with atomic number Z ≤ 8 using FLUKA. In contrast to previous clinical FLUKA-based MC implementations for IBT which only re-calculate a given treatment plan, the developed prototype features inverse optimization of absorbed dose and RBE-weighted dose for single fields and simultaneous multiple-field optimization for realistic treatment conditions. In a study using this newly-developed tool, the robustness of IBT treatment fields to uncertainties in the prediction of RBE values is investigated, while comparing different optimization strategies.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2012. p. 86
Keywords
Monte Carlo, ion beam therapy, treatment planning, cancer therapy, microdosimetry
National Category
Physical Sciences
Research subject
Medical Radiation Physics
Identifiers
urn:nbn:se:su:diva-81111 (URN)978-91-7447-551-7 (ISBN)
Public defence
2012-11-29, föreläsningssalen, Radiumhemmet, Karolinska universitetssjukhuset, Solna, 09:00 (English)
Opponent
Supervisors
Funder
EU, FP7, Seventh Framework Programme, PITN-GA-2008-215840-PARTNEREU, FP7, Seventh Framework Programme, ENVISION FP7 Grant Agreement N. 241851
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Submitted. Paper 6: Manuscript.

Available from: 2012-11-07 Created: 2012-10-10 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Böhlen, Till Tobias

Search in DiVA

By author/editor
Böhlen, Till Tobias
By organisation
Department of Physics
In the same journal
Physics in Medicine and Biology
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 532 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf