Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Crystalline Iron Oxohalide Nanotube Pea Pods
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
2012 (English)In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, no 25, 3971-3974 p.Article in journal (Refereed) Published
Abstract [en]

Compounds Fe7Sb3(PO4)3O6Cl3 and Fe7Sb3(PO4)3O6Br3 are the first iron phosphates containing SbIII. They were synthesized by chemical vapor transport reactions, and their crystal structures were characterized by single-crystal X-ray diffraction. The compounds are isostructural and crystallize in the orthorhombic space group Pnma. Tubular Fe7(PO4)3O6X3 units (X = Cl, Br) are linked by SbO4 groups to build up a framework. The tubular units consist of an outer part made up of [FeO5X] octahedra where the Fe atoms are arranged to resemble a nanotube. Inside the tubes there are phosphate groups, and at the very center there is a chain of face-sharing [FeO6] octahedra.

Place, publisher, year, edition, pages
2012. no 25, 3971-3974 p.
Keyword [en]
Oxohalides, Structure elucidation, Nanostructures, Iron, Antimony
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:su:diva-81259DOI: 10.1002/ejic.201200205ISI: 000307950500002OAI: oai:DiVA.org:su-81259DiVA: diva2:560593
Note

AuthorCount:3;

Available from: 2012-10-15 Created: 2012-10-15 Last updated: 2017-12-07Bibliographically approved
In thesis
1. The Role of Tetrahedral Building Blocks in Low-Dimensional Oxohalide Materials
Open this publication in new window or tab >>The Role of Tetrahedral Building Blocks in Low-Dimensional Oxohalide Materials
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The structural architecture found in low-dimensional materials can lead to a number of interesting physical properties including anisotropic conductivity, magnetic frustration and non-linear optical properties. There is no standard synthesis concept described thus far to apply when searching for new low-dimensional compounds, and therefore control on the design of the new materials is of great importance.This thesis describes the synthesis, crystal structure and characterization of some new transition metal oxohalide compounds containing p-elements having a stereochemically active lone-pair. First row transition metal cations have been used in combination with SeIV, SbIII and TeIV ions as lone-pair elements and Cl- and Br- as halide ions. The lone-pairs do not participate in covalent bonding and are responsible for an asymmetric one-sided coordination. Lone-pair elements in combination with halide ions have shown to be powerful structural spacers that can confine transition metal building blocks into low-dimensional arrangements. The halide ions and lone-pairs reside in non-bonded crystal volumes where they interact through weak van der Waals forces. The transition metal atoms are most often arranged to form sheets, chains or small clusters; most commonly layered compounds are formed.To further explore the chemical system and to separate the transition metal entities even more the possibility to include tetrahedral building blocks such as phosphate-, silicate-, sulphate- and vanadate building blocks into this class of compounds has been investigated. Tetrahedral building blocks are well known for their ability of segmenting structural arrangements by corner sharing, which often leads to the formation of open framework structures. The inclusion of tetrahedral building blocks led to the discovery of interesting structural features such as complex hydrogen bonding, formation of unusual solid solutions or faulted stacking of layers.Compounds for which phase pure material could be synthesized have been characterized in terms of their magnetic properties. Most compounds were found to have antiferromagnetic spin interactions and indications of magnetic frustration could be observed in some of them.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2014. 60 p.
Keyword
Lone-pair elements, crystal structure, low-dimensional compounds, oxohalides
National Category
Inorganic Chemistry
Research subject
Inorganic Chemistry
Identifiers
urn:nbn:se:su:diva-108160 (URN)978-91-7649-014-3 (ISBN)
Public defence
2014-11-13, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockhom, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 6: Manuscript. Paper 9: Manuscript. Paper 10: Manuscript.

Available from: 2014-10-22 Created: 2014-10-13 Last updated: 2014-11-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Zimmermann, IwanJohnsson, Mats
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
European Journal of Inorganic Chemistry
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf