Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
NMR Investigation of Guest–Host Complex between Chloroform and Cryptophane C
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Charles University Prague .
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
Show others and affiliations
2010 (English)In: Magnetic Resonance in Chemistry, ISSN 0749-1581, E-ISSN 1097-458X, Vol. 48, no 8, p. 623-629Article in journal (Refereed) Published
Abstract [en]

Guest–host complex between cryptophane C, possessing two non-equivalent caps, and chloroform is investigated by NMR spectroscopy. The kinetics of the chloroform exchange between the bound and free sites is determined by 1H exchange spectroscopy. Moreover, the preferential orientation of chloroform molecule with respect to the cryptophane C frame is examined by the NOESY and ROESY experiments. The experimental findings are compared to the results of quantum chemical calculations.

Place, publisher, year, edition, pages
2010. Vol. 48, no 8, p. 623-629
Keywords [en]
proton NMR, inclusion complexes, complexation kinetics, cross-relaxation
National Category
Physical Chemistry
Research subject
Physical Chemistry
Identifiers
URN: urn:nbn:se:su:diva-81422DOI: 10.1002/mrc.2637ISI: 000280218800008OAI: oai:DiVA.org:su-81422DiVA, id: diva2:561614
Available from: 2012-10-19 Created: 2012-10-19 Last updated: 2022-02-24Bibliographically approved
In thesis
1. Chloromethane Complexation by Cryptophanes: Host-Guest Chemistry Investigated by NMR and Quantum Chemical Calculations
Open this publication in new window or tab >>Chloromethane Complexation by Cryptophanes: Host-Guest Chemistry Investigated by NMR and Quantum Chemical Calculations
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Host–guest complexes are widely investigated because of their importance in many industrial applications. The investigation of their physico–chemical properties helps understanding the inclusion phenomenon. The hosts investigated in this work are cryptophane molecules possessing a hydrophobic cavity. They can encapsulate small organic guests such as halo–methanes (CH2Cl2, CHCl3). The encapsulation process was investigated from both the guest and the host point of view. With the help of Nuclear Magnetic Resonance (NMR), the kinetics of complex formation was determined. The information was further used to obtain the activation energies of the processes. Having done this on five different cryptophanes, it is possible to relate the energies to structural differences between the hosts. Via the dipolar interaction between the guest’s and host’s protons, one can get information on the orientation of the guest inside the cavity. Moreover, the dynamics of the guest can be further investigated by its relaxation properties. This revealed restricted motion of the guest inside the host cavity. Not only the nature of the guest plays an important role. The host is also changing its properties upon encapsulation. All the cryptophanes investigated here can exchange rapidly between many conformers. These conformers have different–sized cavities. Quantum chemical optimization of the structure of the conformers makes volume estimation possible. Not only the cavity volumes, but also the quantum-chemically obtained energies and the calculated chemical shifts of the carbon–13 atoms can be helpful to follow the changes of the host upon complex formation. The host cannot be considered as a rigid entity. Analysis of variable temperature proton and carbon-13 spectra shows that the encapsulation can be considered as a mixture of conformational selection and induced fit. The structures of the formed complexes are further investigated by means of two-dimensional nuclear Overhauser spectroscopy (NOESY). The complex formation, its kinetics and thermodynamics are found to be a complicated function of structure elements of the host, the cavity size and the guest size and properties.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry (MMK), Stockholm University, 2012. p. 57
Keywords
Host–guest complexes, inclusion phenomenon, cryptophanes, NMR, kinetics, activation energy, dipolar interaction, exchange, quantum chemical optimization, calculated chemical shifts, NOESY, cavity size
National Category
Physical Chemistry
Research subject
Physical Chemistry
Identifiers
urn:nbn:se:su:diva-81472 (URN)978-91-7447-598-2 (ISBN)
Public defence
2012-11-30, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted. Paper 5: Manuscript.

 

Available from: 2012-11-08 Created: 2012-10-22 Last updated: 2022-02-24Bibliographically approved
2. Fast Dynamic Processes in Solution Studied by NMR Spectroscopy
Open this publication in new window or tab >>Fast Dynamic Processes in Solution Studied by NMR Spectroscopy
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nuclear magnetic resonance (NMR) spectroscopy is capable to deliver a detailed information about the dynamics on molecular level in a wide range of time scales, especially if accompanied by suitably chosen theoretical tools. In this work, we employed a set of high-resolution NMR techniques to investigate dynamics processes in several weakly interacting molecular systems in solution.

Van der Waals interactions play an important role in inclusion complexes of cryptophane-C with chloroform or dichloromethane. The complex formation was thoroughly investigated by means of 1H and 13C NMR experiments along with the quantum-chemical density functional theory (DFT) calculations. We characterized kinetics, thermodynamics, as well as fine details of structural rearrangements of the complex formation.

Internal dynamics of oligo- and polysaccharides presents a considerable challenge due to possible coupling of internal and global molecular motions. Two small oligosaccharides were investigated as test cases for a newly developed integrated approach for interpreting the dynamics of the molecules with non-trivial internal flexibility. The approach comprised advanced theoretical tools, including stochastic modeling, molecular dynamics (MD) simulations, and hydrodynamic simulations.

A biologically important bacterial O-antigenic polysaccharide from E. Coli O91 was addressed employing selective isotope labeling and multiple-field 13C relaxation experiments. The complex dynamics of the polysaccharide is characterized by the conformational motion of the exocyclic groups of the sugars, superimposed to the breathing motion of the polymeric chain.

Hydrogen bonding is another major non-covalent interaction. Dilute solutions of ethanol were chosen as a model of liquid systems containing extensive hydrogen-bonded networks. We developed a new methodology consisting of NMR diffusion measurements, DFT calculations, and hydrodynamic modeling and utilized it to determine average size of the molecular clusters of ethanol at given conditions.

Abstract [cs]

Nukleární magnetická rezonance (NMR) dokáže poskytnout detailní informace o dynamice na molekulární úrovni v širokém oboru časových škál, zejména pokud je doplněna vhodnými teoretickými nástroji. V této práci byla použita sada technik NMR spektroskopie vysokého rozlišení pro výzkum dynamických procesů slabě interagujících molekulárních struktur v roztoku.

Van der Waalsovy interakce hrají důležitou roli v inkluzních komplexech kryptofanu-C s chloroformem nebo dichlormethanem. Tvorba komplexu byla podrobně zkoumána za použití 1H a13C NMR experimentů spolu s kvantově-chemickými výpočty. Byla charakterizována kinetika, termodynamika, jakož i detaily strukturních změn při tvorbě komplexu.

Vnitřní dynamika oligo- a polysacharidů představuje velkou výzvu  kvůli možnému provázání lokálního a globálního molekulárního pohybu. Dva modelové oligosacharidy byly použity pro testování nově vyvinuté integrované metody pro popis dynamiky molekul s netriviální vnitřní flexibilitou. Tato metoda spojuje pokročilé teoretické výpočty včetně stochastického modelování, simulací molekulové dynamiky a hydrodynamiky.

Antigenní bakteriální polysacharid z E. Coli O91, důležitý z biologického hlediska, byl studován za pomoci selektivního izotopového značení a NMR relaxačních experimentů ve více magnetických polích. Komplexní dynamika polysacharidu je charakterizována konformačními změnami exocyklických skupin cukerných reziduí a omezenou interní flexibilitou polymerního řetězce.

Vodíkové vazby jsou další z důležitých nekovalentních interakcí. Zředěné roztoky ethanolu byly vybrány jako model kapalného systému obsahujícího rozsáhlou síť vodíkových vazeb. Vyvinuli jsme novou metodologii, složenou z NMR difúzních měření, kvantově-chemických výpočtů a hydrodynamického modelování a aplikovali ji pro zjištění průměrné velikosti molekulových klastrů ethanolu za specifických podmínek.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University, 2013. p. 52
Keywords
Nuclear magnetic resonance, Dynamics, Ethanol, Cryptophanes, Saccharides, Nukleární magnetická rezonance, dynamika, ethanol, kryptofan, sacharidy
National Category
Physical Chemistry
Research subject
Physical Chemistry
Identifiers
urn:nbn:se:su:diva-92881 (URN)978-91-7447-741-2 (ISBN)
Public defence
2013-09-25, Magnéli Hall, Arrhenius Laboratory, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted. Paper 5: Manuscript.

Available from: 2013-09-03 Created: 2013-08-23 Last updated: 2022-02-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Takacs, ZoltanŠoltésová, MáriaKowalewski, Jozef

Search in DiVA

By author/editor
Takacs, ZoltanŠoltésová, MáriaKowalewski, Jozef
By organisation
Department of Materials and Environmental Chemistry (MMK)
In the same journal
Magnetic Resonance in Chemistry
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf