Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
NMR investigations of the dual targeting peptide of Thr-tRNA synthetase and its interaction with the mitochondrial Tom20 receptor in Arabidopsis thaliana
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
Show others and affiliations
2012 (English)In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 279, no 19, 3738-3748 p.Article in journal (Refereed) Published
Abstract [en]

Most mitochondrial proteins are synthesized in the cytosol as precursor proteins containing an N-terminal targeting peptide and are imported into mitochondria through the import machineries, the translocase of the outer mitochondrial membrane (TOM) and the translocase of the inner mitochondrial membrane (TIM). The N-terminal targeting peptide of precursor proteins destined for the mitochondrial matrix is recognized by the Tom20 receptor and plays an important role in the import process. Protein import is usually organelle specific, but several plant proteins are dually targeted into mitochondria and chloroplasts using an ambiguous dual targeting peptide. We present NMR studies of the dual targeting peptide of Thr-tRNA synthetase and its interaction with Tom20 in Arabidopsis thaliana. Our findings show that the targeting peptide is mostly unstructured in buffer, with a propensity to form a-helical structure in one region, S6F27, and a very weak beta-strand propensity for Q34Q38. The a-helical structured region has an amphiphilic character and a f??ff motif, both of which have previously been shown to be important for mitochondrial import. Using NMR we have mapped out two regions in the peptide that are important for Tom20 recognition: one of them, F9V28, overlaps with the amphiphilic region, and the other comprises residues L30Q39. Our results show that the targeting peptide may interact with Tom20 in several ways. Furthermore, our results indicate a weak, dynamic interaction. The results provide for the first time molecular details on the interaction of the Tom20 receptor with a dual targeting peptide. Database The backbone chemical shift assignments for ThrRS-dTP(260) have been deposited with the Biological Magnetic Resonance Bank (BMRB) under the accession code 18248 Structured digital abstract ThrRS-dTP and Tom20-4 bind by nuclear magnetic resonance (View interaction)

Place, publisher, year, edition, pages
2012. Vol. 279, no 19, 3738-3748 p.
Keyword [en]
dual targeting peptide, mitochondria, NMR, protein import, structure
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry; Biophysics
Identifiers
URN: urn:nbn:se:su:diva-82129DOI: 10.1111/j.1742-4658.2012.08735.xISI: 000308928900019OAI: oai:DiVA.org:su-82129DiVA: diva2:566744
Funder
Swedish Research Council, 621-2011-5964
Note

AuthorCount:6;

Available from: 2012-11-09 Created: 2012-11-08 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Dual targeting of proteins to mitochondria and chloroplasts: Characterization of dual targeting peptides and their interaction with organellar receptors
Open this publication in new window or tab >>Dual targeting of proteins to mitochondria and chloroplasts: Characterization of dual targeting peptides and their interaction with organellar receptors
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Most mitochondrial and chloroplastic proteins are synthesized in the cytosol as precursor proteins with an N-terminal targeting peptide (TP), which directs them to the correct organelle. There is also a group of proteins that are dual targeted to mitochondria and chloroplasts using an ambiguous N-terminal dual targeting peptide (dTP). The aim of this thesis was to characterize dTPs with respect to physicochemical features, sequence patterns, structural properties and interaction with the mitochondrial and chloroplastic receptors.

We have used different statistical methods, including a multivariate data analysis (MVDA) to analyse all available dTPs and compare them to organelle-specific TPs of proteome-identified mitochondrial and chloroplastic proteins from Arabidopsis thaliana. The overall amino acid sequence patterns of dTPs were intermediate between mitochondrial targeting peptides (mTPs) and chloroplastic targeting peptides (cTPs) but the greatest differences in amino acid composition were found within the very N-terminal region of dTPs, where especially arginines are highly overrepresented in relation to cTPs. Interestingly, introducing arginines to the dTPs showed clustering towards the mTPs in silico and resulted in inhibition of chloroplast import in vitro, suggesting that positive charges in the N-terminal region of TPs may function as an 'avoidance signal' for chloroplast import.

Studies with the dTP of threonyl-tRNA synthetase (ThrRS-dTP) revealed that 60 amino acids were required to confer dual targeting. The purified ThrRS-dTP(2-60) inhibited import of organelle-specific proteins, providing evidence that dual and organelle-specific proteins use the same organellar import pathways. CD spectra indicated that ThrRS-dTP(2-60) has the propensity to form a-helical structure in membrane mimetic environments. Further, NMR investigations of interaction profiles of ThrRS-dTP(2-60) with the mitochondrial Tom20 and the chloroplastic Toc34 receptor demonstrated that the mode of the recognition of a dual targeting peptide by mitochondrial and chloroplastic receptors is different. Our studies provide thorough characterization of dTPs and present for the first time dTP-organellar receptor interactions on the molecular level.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2014. 76 p.
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:su:diva-108471 (URN)978-91-7649-027-3 (ISBN)
Public defence
2014-12-12, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Manuscript.

Available from: 2014-11-20 Created: 2014-10-28 Last updated: 2014-12-17Bibliographically approved
2. One key to two doors: Dual targeting peptides and membrane mimetics
Open this publication in new window or tab >>One key to two doors: Dual targeting peptides and membrane mimetics
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A targeting peptide at the N-terminus of a precursor protein usually directs the protein synthesized in the cytosol to a specific organelle in the cell. Interestingly, some targeting peptides, so-called dual targeting peptides (dTPs) can target their protein to both mitochondria and chloroplasts. In order to understand the mechanism of dual targeting, a dTP from threonyl tRNA synthetase (ThrRS-dTP) was investigated as a model dTP in this thesis work. The results suggest that ThrRS-dTP is intrinsically disordered in solution but has an α-helical propensity at the N-terminal part. Tom20 and Toc34 are the two primary receptors on the outer membranes of mitochondria and chloroplasts, respectively. We found that the N-terminal half of the ThrRS-dTP sequence, including an amphiphilic helix, is important for the interaction with Tom20. This part also contains a φχχφφ motif, where φ represents a hydrophobic/aromatic residue and χ represents any amino acid residue. In contrast, neither the amphiphilic helix nor φχχφφ motif in ThrRS-dTP has any special role for its interaction with Toc34. Instead, the entire sequence of ThrRS-dTP is important for Toc34 interaction, including the C-terminal part which is barely affected by Tom20 interaction.

In addition, the role of lipids in the organelle membrane for the recognition of dual targeting peptides during protein import is also the focus of this thesis. The tendency to form α-helix in ThrRS-dTP, which is not observable in solution by CD, becomes obvious in the presence of lipids and DPC micelles. To be able to study such interactions, DMPC/DHPC isotropic bicelles under different conditions have also been characterized. These results demonstrate that bicelles with a long-chained/short-chained lipid ratio q = 0.5 and a concentration larger than 75 mM should be used to ensure that the classic bicelle morphology persists. Moreover, we developed a novel membrane mimetic system containing the galactolipids, MGDG or DGDG, which have been proposed to be important for protein import into chloroplasts. Up to 30% MGDG or DGDG lipids were able to be integrated into bicelles. The local dynamics of the galactolipids in bicelles displays two types of behavior: the sugar head-group and the glycerol part are rigid, and the acyl chains are flexible.

Place, publisher, year, edition, pages
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2015. 69 p.
Keyword
: Dual targeting peptides, protein import, mitochondria and chloroplasts, bicelles, galactolipids, NMR spectroscopy
National Category
Biophysics
Research subject
Biophysics
Identifiers
urn:nbn:se:su:diva-116817 (URN)978-91-7649-159-1 (ISBN)
Public defence
2015-05-29, Magnéli hall, Arrhenius Laboratory, Svante Arrhenius väg 16 B, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: In press.

Available from: 2015-05-07 Created: 2015-04-28 Last updated: 2015-06-29Bibliographically approved

Open Access in DiVA

Fulltext(287 kB)176 downloads
File information
File name FULLTEXT02.pdfFile size 287 kBChecksum SHA-512
ba20e7f5f896b476e55cbb1388e72ea89d801e34ede8c065561bc6199eb6c9560fcc30e43f64923be8a5d24af1e04d2b6af82e7cc99ef1bc9eb799aa9475b035
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Ye, WeihuaSpånning, ErikaUnnerståle, SofiaGlaser, ElzbietaMäler, Lena
By organisation
Department of Biochemistry and Biophysics
In the same journal
The FEBS Journal
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 176 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf